Intermountain Archaeology

Edited by
David B. Madsen and Michael D. Metcalf

The University of Utah Press
Salt Lake City
Lithic Sources in the Rocky Mountains of Colorado

Kevin D. Black

This study describes the nature and scope of flaked stone sources used prehistorically in the Rocky Mountains of Colorado. Data on known sources were compiled from searches of the computerized files of the Office of Archaeology and Historic Preservation (OAHP) in Denver, followed by collation of information provided on standard Colorado site forms. Two field searches were done: one on the 29 counties in Colorado all or partially covering the Southern Rocky Mountains physiographic province, and a second on all sources situated at or above 6,000 ft (1,800 m) elevation. Thirteen defined, the database includes 1,800 sources in the 29 mountain counties, and 57 additional sources above 6,000 ft elevation outside the 29-county area. Factors included in the study of these sources are geologic formation, material type(s), elevation, quarry features present, core reduction strategies, and evidence for associated nonprocurement activities. This study attempts to characterize prehistoric procurement systems throughout the upland environments in Colorado, and provides directions for future research.

INTRODUCTION

In reviewing literature on the archaeology of the Colorado mountains, it is not uncommon to find references to the presence of lithic (especially flaked stone) materials using such general terms as "local chert," "Dakota quartzite," or more specifically "Kremmling chert," "Parker petrified wood," etc. Yet the basis for the assignment of these labels often involves no more than macroscopic, visual rock attributes and the investigator's personal familiarity with a few large or local prehistoric quarries. The implications of extrapolating prehistoric group mobility, territorial size and range, and exchange patterns from such information are huge, but the assumptions that the artifacts we find on mountain sites were made from materials available nearby or in large, well-known quarries are not always well-founded. To begin to clarify the true availability of lithic resources in the mountains, this paper provides a catalog of recorded quarry sites. In that survey coverage in the Colorado mountains averages less than 5 percent per county, the results of this compilation should be seen as no more than a starting point for more accurate interpretations of past landscape use.

Another fact that became clear in researching this subject is how few detailed studies on specific quarries have been done. One of the largest in the mountains also was one of the first to be studied, the Trout Creek source zone within the Arkansas River system in Chaffee County (Chambellin et al. 1984). Survey, test excavation, and petrographic analysis (Heinrich 1984) were completed for this important chert source. Another abundant material called Kremmling chert was the subject of a more recent study by Metcalfe et al. (1991), who conducted excavations at two sites in Middle Park (Upper Colorado River Basin) and sponsored a geological study on Kremmling chert and other materials as represented at 12 sites in the area (Miller 1991a). Nearby, the major quartzite source on Windy Ridge near Rabbit Ear Pass has been investigated via excavations by archaeologists from the University of Colorado-Boulder (Bamforth 1994), but a final report is not yet available.

Geochemical and other source characterization research likewise has not been a very common endeavor in the Colorado mountains. Burns (1981) studied several obsidian sources in the San Juan Mountains, but could not confirm that prehistoric quarrying had occurred at many of them. Also in southwestern Colorado, Mauz (1993) completed trace element analyses on chert, quartzite, and obsidian artifacts from Snow Mesa, finding evidence both for local procurement and importation of raw materials. Cassells (1995) tried three different methods of distinguishing materials from a variety of well-known sources in the Front Range region, and found that ultraviolet light response was quite useful. Benedict (1981) also provides helpful geological data on Front Range sources.

Regionally, research at quarry sites and more general investigations on the use and movement of lithic materials in prehistoric societies have been of greater interest to archaeologists. Studies of sources on the plains are quite numerous (e.g., Alder 1977; 1986; Church 1994a; Coffin 1955; Greiser 1983; Haury 1984; Hoard et al. 1993; Ives 1984; Saul 1969). North and west of Colorado, much of the interest naturally has focused on the numerous obsidian sources of the region (Davis et al. 1993; Hughes 1984; Nelson 1984; Nelson and Holmes 1979) but there are important exceptions (e.g., Elston and Raven 1992). It should be obvious that source studies in states adjacent to Colorado must be utilized in research that seeks to define prehistoric landscape use partially or wholly within the Southern Rocky Mountains.
GOALS AND METHODS OF THE STUDY

The primary goal of the present study was to document the number and diversity of toolstone sources in the mountains of Colorado, using the computerized site files at the Office of Archaeology and Historic Preservation (OAHP) in Denver. Beyond this rather mundane task was the attempt to characterize prehistoric procurement systems in upland settings. What core reduction strategies were represented, and in what proportions? What other lithic tool production data were available? What kinds of nonquarrying activities were in evidence? As will become clear, the quality of the database varied widely and some topics of interest could not be addressed with the information at hand.

The methods utilized were quite simple. Two searches were made of OAHP's computerized files. One listed all lenticular sources in the 29 counties all or mostly within the mountainous central 40 percent of the state, and the second was to identify all such sources in Colorado above 6,000 ft (1,829 m) elevation. These searches were completed in June 1993 and were updated in April 1995 but, because of a data entry backlog, the database does not include information from site forms received at OAHP between about October 1992 and July 1993. Thus defined, the list of sources included 194 sites in the 29 mountain counties and 48 additional sites outside those counties at elevations exceeding 6,000 ft. Many of the listings were deleted upon further investigation, including sites with multiple site numbers, historical rock quarries, and paleontological quarries. Several others were added to the list based on the author's personal familiarity with recently recorded sites. The final total, then, is 180 sites in the 29 mountain counties and 57 other sites above 6,000 ft elevation.

Rather than relying strictly on encoded data, each site form was perused in compiling all information on quarrying activities, features, geological information, tool diversity.
and density, material types present, and any other relevant data. In a few cases, missing site forms were adequately replaced by information from associated contract reports. At a minimum, locational data were available for each of the 437 sites in the final compilation. Surprisingly, in three cases the site form made no mention of the type of rock acquired at that location and, not surprisingly, more recently completed forms tended to yield more useful information than older forms. Overall, the most disappointing part of the project was the lack of information about core reduction strategies on the site forms. Local geology was rarely mentioned, and details on artifact assemblages were spotty at best. Still, the available data provide a starting point for future studies.

MATERIAL TYPES

Six illustrations (Figures 9.1-9.6) depict the distribution of different material types in upland areas of Colorado. The raw data upon which these maps are based have been compiled in tabular form (Appendix 9.1).

Crypto-Microcrystalline Silicates

The most common materials in the Coloradoan formations are the dense, smooth-textured silicate rocks variously referred to as agate, chert, chalcedony, or jasper. No effort was made to distinguish between these potentially different materials because of the inconsistent usage of these terms by archaeologists and, more importantly, because these materials likely served similar functions in prehistoric tool kits. However, petrified wood quarries have been considered separately because of their obvious potential in sourcing studies.

There are 136 sites in this category, of which 107 are in the 29 mountain counties (Figure 9.1). Clustering of sources is evident in two general areas: Grand County (Middle Park) and a broad zone in the south-central mountains, particularly in Fremont County. Two major, well-known material types encompass most of the Grand County sites. Sites in eastern Grand County generally yield an opaque, iron-rich chert of volcanic origin termed Table Mountain jasper, occurring within the Grouse Mountain basalt (Miocene and Pliocene) and in younger, secondary gravel sources (Izet 1966; Miller 1991a:35).

Quarries in the central and western portions of the county represent procurement of a mottled translucent to opaque material called Kremmling chert, derived from the Troublesome formation (Miocene) as well as in numerous terrace gravel sources (Benedict 1981:124; Izet 1968; Metcalf et al. 1991; Miller 1991a:2-5, 1991b). Materials very comparable to, if not indistinguishable from this chert are available at several quarries mapped in Routt and Eagle counties within the Browns Park formation (Miocene), and in Jackson County within the North Park formation (Miocene). Visually comparable cherts also occur in eastern Pitkin County, but the geological context there is yet unstudied.

The cherty toolstone in the south-central mountains of Chaffee, Gunnison, Fremont, Park, Saguache, and Teller counties derive from much more variable conditions. Their relative proximity to one another is merely a fortunate coincidence, as the geology of this portion of the mountains is quite complex. Largest of these sources, and the second-largest in the database, is the well-known Trout Creek chert quarry in Chaffee County, covering 2,644 acres (1,070 ha) (Chambellan et al. 1983) in combined quarry and workshop areas. The main outcrops at Trout Creek are believed to be in the Ordovician-age Manito limestone (Heinrich 1985: 96-98); late Oligocene volcanic activity has altered some of these beds. Very similar cherts and jaspers can be found to the northeast in Park County and to the southeast in Fremont County at several sites near the Arkansas River. This zone also includes the two highest elevation sites in the sample, both small chert sources on the Continental Divide in northern Saguache County at 11,680 ft (3,550 m).

Other sources in this category are mostly scattered in widely separated sections of the mountains. The small cluster in Jefferson County is found on the west and south sides of Green Mountain near Morrison; some of this chert actually may be petrified wood from the Paleocene-age Green Mountain conglomerate (Scott 1952a). About a dozen sources are scattered in and around the San Juan Mountains in southwestern Colorado, including 3 outside the 29 central counties but at elevations above 10,000 ft (3,048 m) in La Plata County and on the Dolores-Montezuma county line. Of course, since survey coverage in the mountains averages about 2 percent per county and is no higher than 8 percent of any of the 29 mountain counties, the true number of toolstone sources must be much higher. The Fosttop Butte source in northeastern Colorado is shown for reference purposes only, as it is one of the best-known quarries in the state (Greiser 1983; Ives 1984; Hoard et al. 1992).

Petrified Wood

The distribution of the 26 petrified wood sources in the sample is quite interesting, with a notable lack of sources in the southern part of the mountains (Figure 9.2). Only a couple quarries near Pahin in the Upper Gunnison River Basin have been recorded there, with most of the remains clustered along the Front Range and in the North Park-Middle Park area. Seventeen of the 26 petrified wood sources are in the northern and central mountains. Another 8 are in the Black Forest area of east-central Colorado, where many other such sources are known but occur at slightly lower elevations. This material, locally known as Parker petrified wood, is found in large quantities within
the Dawson arkose (Paleocene and early Eocene) and in many secondary deposits. Farther north, the Jefferson County materials around Green Mountain probably derive from the correlative Green Mountain conglomerate, but silicified woods also are known from the underlying Denver formation of Upper Cretaceous and Paleocene age (Benedict 1961:116; Scott 1972a).

To my knowledge, few geological studies have been conducted on the silicified woods found west of the Front Range, which might identify distinguishing characteristics between sources. Leet (1968:14) does place the fossil woods from eastern Grand County within the Middle Park formation (Paleocene), suggesting that distinctions with contemporaneous materials from the eastern slope may not be obvious. Clearly, however, the potential is there for source-specific characterizations of silicified woods and might succeed where comparable efforts with nonfossiliferous cherts have failed.

Quartzites

The second most commonly encountered material type in Colorado is quartzite (there was insufficient information available on the site forms to distinguish between metaquartzites and orthoquartzites, although in most cases this probably made little difference functionally for prehistoric groups). There are 116 quartzite sources in the database, of which 83 are in the 29 central counties (Figure 9.3). Note the continued clustering of sources in the south-central mountains, most notably in Gunnison County. As those familiar with Gunnison County archaeology can attest, the number of recorded sources there is an arbitrary figure at best, as the ground is virtually paved with quartzite for long stretches in many areas. Site boundaries there are drawn more for convenience than to reflect archaeological reality. The cluster not only includes such extensive source zones—primarily in the Junction Creek formation (Jurassic)—but
also one of the smallest sites in the database where a single quartzite boulder was worked (5GN330).

Significant numbers of quartzite sources also occur in Fremont, Jefferson, Grand, and Jackson counties, and in scattered locations elsewhere. One of the larger sources in northern Colorado, for example, is the Windy Ridge quarry near Rabbit Ears Pass, which exhibits literally hundreds of pits representing huge labor investments in removing the sandstone caprock to extract the quartzite (an orthoquartzite, according to Cassells [1995:231-232]; also see Benedict 1990). As is true in many parts of the Front Range and west of the mountains near the Utah border, the Windy Ridge quartzite is exposed in an outcrop of the lower Cretaceous-age Dakota group. Scores of other quartzite sources are present in Colorado outside the 29 central counties, such as on the Uncompahgre Plateau and in southeastern Colorado, but are at relatively low elevations.

Igneous Rocks

Fine-grained to glassy volcanics usable as toolstone are not particularly abundant in Colorado, totaling 15 recorded sources of which 13 are in the 29 mountain counties (Figure 9.4). Specific materials utilized include basalt and rhyolite with 5 sources each, andesite and obsidian with 2 recorded sources each, and 1 welded tuff source. Contrary to expectations, not all such sources are in the southern portion of the mountains where volcanic deposits predominate, as quarries have been recorded in North Park, Middle Park, and Taylor Park in Gunnison County, just to name three. The largest site in the database is a rhyolite source covering over 3,246 acres (1,313 ha) at elevations up to 11,600 ft (3,536 m) on the Mineral-Rio Grande county line. It occurs in ash-flow tuffs of late Oligocene age (formation uncertain; site form data and Tweto [1973]).

Both obsidian outcrops are on the flanks of Cochetopa
Dome in Saguache County, in quartz latitic lavas of late Oligocene age (Tweto 1979). Even though no quarrying or workshop debris has been found at those sites, the trace element signature of this obsidian has been matched in collections from sites in adjacent counties (e.g., Montgomery et al. 1986). Other small sources of obsidian have been reported from the San Juan Mountains (e.g., Burns 1984) but, to date, no additional quarries have been confirmed.

Miscellaneous Material Types

Five other material types complete the inventory of toolstone sources (Figure 9.4). Silstone accounts for 8 of these sources, all of which are outside the 29 mountain counties in western and southwestern Colorado. They outcrop there in the Upper Cretaceous age Mesa Verde group (Gordon et al. 1963:13-15). The term silstone also has been used to describe the dark gray to black, fine-grained toolstone found on the Park Plateau around Trinidad, but argillite may be a more accurate identification for this material. One argillite-silstone quarry has been recorded about 6,000 ft elevation in Las Animas County. This source probably occurs within the Raton formation of Upper Cretaceous and Paleocene age (Tweto 1979).

Granitic rocks are common finds as ground stone artifacts in the mountains, but only one possible quarry for this material has been recorded, in Gunnison County. Even this source is questionable, but the description of materials on the site form renders an off-site evaluation difficult. Kramme (1977) describes another possible source of material for grinding stones, in the hogback country west of Fort Collins in Larimer County. Large, apparently ancient pits at this site are suspected sandstone quarrying features. Located within the Ingleside formation (Permian), the site contrasts with Historic period quarrying of sandstones in the nearby Lyons formation (also Permian age), although
prehistoric exploitation of the latter also is documented (e.g., Cassells 1995).

One hematite source in western Eagle County represents the only mineral pigment material in the database. This source is in the Leadville limestone of Mississippian age. Again, site documentation clearly underrepresents the frequency with which indigenous groups must have utilized such resources. Casual surface collecting may have been a more typical procedure than quarrying of concentrated deposits, however.

Finally, three lithic sources in the site files did not include a description of the material type—two are in Larimer County and one is in Huerfano County. In the latter case, known quartzite sources virtually surround the unspecified quarry and suggest a probable material type, but no such speculation is warranted for the Larimer County sites.

SUMMARY DATA

Putting these data together, the aforementioned clustering in Fremont (26 quarries), Grand (41 quarries), and Gunnison (44 sites) counties is reinforced (Figure 9.6). Combined, these three areas encompass fully 47 percent of the 237 sites in the sample, and nearly 62 percent of the sources in the 29 mountain counties. Sampling error is an unlikely explanation for this clustering as no more than 5 percent of these three counties has been formally surveyed. Another measure of the abundance of toolstone sources is to compare the number of recorded quarries with the total number of prehistoric sites in each county (excluding isolated finds). The same three counties also top this accounting: quarries constitute about 85 percent of the sites in Fremont County, 7 percent in Grand County, and 6 percent in Gunnison County.

In locational terms, elevations of all sources in the sample range from 5,200 ft (1,585 m) at a chalcedony quarry in the Larimer County foothills to 11,680 ft (3,556 m) at the two chert quarries on the Continental Divide in Saguate County. Average elevation is 7,777 ft ± 1,255 ft (2,373 m ± 383 m; one-sigma range), and 10 sources exceed 10,000 ft (3,048 m) in elevation. Quarry sizes range from 8 sq m at a site in Roxborough State Park in Douglas County, to 3,244 acres (1,313 ha) at the rhyolite quarry on the Mineral-Rio Grande county line. Average size is 53 acres (21.5 ± 119.3 ha; one-sigma range), which translates to a site roughly 463 sq m.

However, the huge standard deviation suggests that quarry size is governed more by geological and other natural factors, rather than by patterned human behavior.

Although the geological formation was specified in only 21 cases, careful reading of the site forms suggests a more general but, perhaps, case-specific breakdown is possible—namely, distinguishing between primary bedrock sources and secondary sources in terraces, pediment gravels, alluvial fans, stream beds, and the like. In the 29 mountain counties 135 sources are primary, 34 are secondary, 2 sites have both kinds of source material, and 9 sites have descriptions too vague to make a determination. An additional 46 primary sources and 12 secondary sources are in the high-elevation sample outside the mountain counties. All told, over 75 percent of all sources in the database are at primary bedrock outcrops.

Activity Analysis

As previously mentioned, details on quarrying activity generally were not provided on the site forms. The presence of quarrying pits was specifically mentioned at 17 sites, at which typically only 1 to 3 pits were noted; 12–15 pits are present at 3 sites, above which the number of pits jumps drastically to uncouned numbers at the Trout Creek chert source and “now” at the Windy Ridge quartzite quarry. Pits for heat treatment of raw material were identified at Trout Creek during test excavations (Chambellan et al. 1984), and other surficial evidence of intentional thermal alteration was mentioned at 5 additional sites.

In general, core reduction strategies were not detailed on most site forms. However, 69 sites were described as having bifacial cores or bifacial blanks or preforms present, suggesting a general bifacial reduction strategy was represented at a minimum of 29 percent of the quarries in the sample. At 10 sites, a split cobble approach was mentioned. Blade cores were specifically noted at three quarries, and randomly flaked cores were described from two quarries. Two other quarries in Grand County yielded what were described as tortoise cores, suggesting the use of a Levallois-like reduction technique (e.g., Oakley 1956:49–54). At a basalt quarry in Conejos County, the archaeologist suggested raw “block transport” down the mountain had occurred more frequently than on-site reduction. In general, it would not be advisable to draw any conclusions or extrapolations about the core reduction strategies summarized above given that the typical site form failed to provide any such data whatsoever.

Compiling evidence for nonquarrying activities at lithic sources was a more successful endeavor, in that most site forms were relatively complete in documenting the presence of tools and features observed at the quarries. Interest in this aspect of the archaeological record stems from the recognition that, ethnographically, hunter-gatherer groups often follow an embedded procurement strategy for lithic materials, typically gathering raw materials for implements "incidentally to the execution of basic subsistence tasks” (Binford 1975:256). Observation of such artifacts as grinding tools and projectile points within quarries should be common if subsistence pursuits held priority over lithic procurement in prehistoric land-use strategies.

The results of the present study, however, in terms of nonquarrying features are quite diverse but not particularly abundant. Of the 35 sites where such features were noted
(i.e., 15 percent of the quarries in the database), 18 have definite firepits or cobble concentrations suspected to be firepits, and 2 sites have ash or charcoal stains. Six sites exhibit rock cairns, 6 sites have simple rock alignments, and 4 quarries co-occur with stone circles. Two lithic sources in Grand County, upon excavation, yielded the remains of simple mud-and-stick huts (Wheeler and Martin, 1982, 1984), and a third quarry in the same region exhibited three post molds from a structure of uncertain function. One site in Moffat County has two large slabs suggested to be pit-house remnants. Single occurrences of a rockshelter, burial, trail, rock art, a depression, and an Anasazi habitation complex round out the inventory of nonquarry features.

Another way to assess the prevalence of nonquarrying activities at these sites is to look at both tool diversity and specific tool classes. In considering the categories of biface, uniface, and hammerstone as classes directly related to quarrying and core reduction activity, the presence of additional tool classes then may indicate that other activities took place. Of course, the more classes represented, the more likely that nonquarrying activities actually occurred. Up to ten tool classes are present at the 275 sites in the sample—more than ten classes probably are present at some quarries but descriptions such as "some tools" and "many tools" prevented a more exact accounting. Twenty-nine sites (12 percent) have four or more tool classes present and, therefore, probably hosted activities other than toolstone procurement.

Turning to specific tool categories, only 21 site forms (9 percent) mentioned the presence of hammerstones and 1 other site exhibited a probable anvil. No other evidence of quarrying tools such as wedges was mentioned; of course, perishable tools such as wood or antler digging sticks, levers, and punches would not be expected other than from excavated contexts (e.g., Metcalf et al. 1991:42–48). Thirty sites yielded grinding implements and nine had ceramic scatters which, by themselves, probably can be taken as evidence for nonquarrying activities. Seventy-two sites (30 percent) have
projectile points or grinding tools as the most obvious evidence for food procurement activity, but 146 quarries (62 percent) have at least one tool not obviously for lithic procurement tasks (scrapers and generic flake tools are most common). These data lend only moderate support to the observation of the primacy of subsistence activities over lithic procurement in ethnographic studies, but more excavations are needed to test the accuracy of these tool frequency figures.

Total tool densities reach the uncounted "hundreds" at several sites, and 29 sites yielded at least ten tools total regardless of the class(es) represented. Combining data from both features and artifacts, 32 sites (22 percent) have relatively clear evidence for nonquarrying activities. As an aside, noting that 12 site forms mentioned the presence of choppers, one wonders if these "tools" might actually be production blanks, since choppers seem to be quite rare in the author’s personal experience in the mountains. In going back through the records, 11 of those 12 sites were recorded more than 12 years ago when, perhaps, the use of functional labels for tools was subject to less scrutiny.

Lastly, evidence for the presence of lithic materials other than those being quarried at each site was tabulated. The idea here is that materials from known sources document the movement of prehistoric groups across the landscape, and given sufficient data, this information can be used to begin documenting territorial ranges, group interaction, and the like. Among the 257 sites in the database, 91 (about 35 percent) contain one or more material types other than those which were being procured on-site. Thirteen of these 91 sites yielded obsidian artifacts (excluding the Coocheropa Dome source area), with which group movements and exchange systems can be more easily addressed.

DIRECTIONS FOR FUTURE RESEARCH

While there is little doubt that the quality and reliability of information in OAHP’s computerized database is variable...
at best, the trends noted above certainly suggest a number of avenues for further research. From a strictly practical standpoint, the exercise of reading through roughly 200 site forms filled out over a period of about 30 years clearly showed that archaeologists need to do a much better job of describing the artifacts and features observed on surveys. Providing a laundry list of the presence of uncounted cores, flakes, bifaces, and hammerstones without bothering to write even a single sentence about core types, reduction strategies, or the suspected geological formation is not doing good archaeology.

Secondly, too few rigorous mineralogical or other geological analyses of specific toolstone sources have been completed to permit the kinds of settlement and exchange studies advocated here. There have been only a few such analyses in Colorado, and those are limited to the larger source zones such as for the Kremmling and Trout Creek cherts (Heinrich 1984; Miller 1991a). Neutron activation analysis (Maiz 1993), x-ray fluorescence (Miller 1991a), and ultraviolet light response (Cassels 1995) are among the methods far too infrequently utilized in attempts to differentiate among source materials in Colorado. Further, at only 19 sites in the database have either test excavations or large-scale excavations been undertaken. Future work at toolstone sources invariably should include the expertise of geologists or mineralogists. See Ives (1965) for a useful statement on the importance of such studies.

Given that so few quarry-specific studies have been done in the Colorado mountains, it is not surprising that research on the organization of lithic procurement among local groups has been limited. Regionally, however, such studies have generated some interesting, if not controversial, results. For example various measures and interpretations of transport costs associated with lithic procurement strategies have been included in some recent quarry studies (e.g., Elston and Raven 1992). The importance of raw material quality, availability (e.g., distance to source), and abundance in the manufacture of specific tool classes versus the organization of the lithic technology in prehistoric societies has fueled considerable debate, notably between Binford and Gould (Binford 1983; Binford and O’Connell 1984; Binford and Stone 1985; Gould 1980, 1987; Gould and Sagers 1985, among others). For his part, Binford (1972, 1990) deemphasizes distance as a component of transport cost in the Nunamuit case as “...the cost of the [lithic] procurement was not referable to the distance between the source location and the location of use, since the distance would have been traveled anyway,” given that lithic procurement was a task embedded in subsistence pursuits. How procurement strategies in the Colorado mountains compare with such models have yet to be adequately investigated.

Finally, many archaeologists familiar with the archaeology of the Colorado mountains may be surprised at the number of toolstone sources recorded there so far. Most of us typically make reference only to a few of the larger sources when discussing the possible origins of materials observed on other types of sites. Hopefully, the data presented here—however incomplete—will enhance our interpretations of both the prehistoric use of lithic resources and of settlement systems in the mountains.
Appendix 9.1
Catalog of Individual Lithic Sources

<table>
<thead>
<tr>
<th>County/Site Number</th>
<th>Material(s)*</th>
<th>Elevation (ft)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archuleta County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5AA758</td>
<td>Chert and quartzite</td>
<td>7,520</td>
<td>Obsidian artifacts present</td>
</tr>
<tr>
<td>5AA907</td>
<td>Quartzite</td>
<td>8,820</td>
<td>Gray, maroon, and purple colors</td>
</tr>
<tr>
<td>5AAP150</td>
<td>Chert</td>
<td>7,320</td>
<td>Red and brown colors</td>
</tr>
<tr>
<td>5AAP165</td>
<td>Quartzite</td>
<td>8,620</td>
<td></td>
</tr>
<tr>
<td>5AAP236</td>
<td>Chert and quartzite</td>
<td>7,720</td>
<td></td>
</tr>
<tr>
<td>Arapahoe County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5AH411*</td>
<td>Petrified wood</td>
<td>6,000-6,100</td>
<td>Tan, brown, red, black colors; Parker petrified wood (PPW)</td>
</tr>
<tr>
<td>5AH682*</td>
<td>Petrified wood</td>
<td>5,975-6,100</td>
<td>Tan, brown, red, black, PPW; obsidian also present</td>
</tr>
<tr>
<td>5AH864*</td>
<td>Petrified wood</td>
<td>6,000-6,100</td>
<td>Tan, brown, red, black, PPW</td>
</tr>
<tr>
<td>Chaffee County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5CF84</td>
<td>Yellow-brown and dusky red chert</td>
<td>8,700-10,000</td>
<td>Trout Creek source; obsidian and ceramics present</td>
</tr>
<tr>
<td>5CF188</td>
<td>Chert</td>
<td>8,089</td>
<td></td>
</tr>
<tr>
<td>5CF204</td>
<td>Quartzite</td>
<td>8,490</td>
<td></td>
</tr>
<tr>
<td>5CF206</td>
<td>Chert and quartzite</td>
<td>8,800</td>
<td></td>
</tr>
<tr>
<td>Conejos County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5CN35</td>
<td>Gold chert</td>
<td>9,680</td>
<td>Obsidian artifacts present</td>
</tr>
<tr>
<td>5CN146</td>
<td>Basalt</td>
<td>10,600-11,200</td>
<td>“Block transport” suggested</td>
</tr>
<tr>
<td>5CN210</td>
<td>Red and purple chert</td>
<td>7,509</td>
<td>Gray to tan cortex</td>
</tr>
<tr>
<td>Costilla County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5CR54</td>
<td>Red andesite?</td>
<td>8,089</td>
<td>“Volcanic material” source</td>
</tr>
<tr>
<td>Douglas County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5DA171*</td>
<td>Chert, quartzite, petrified wood</td>
<td>6,287</td>
<td>Multicolored materials</td>
</tr>
<tr>
<td>5DA305*</td>
<td>Petrified wood, quartzite, jasper</td>
<td>6,380</td>
<td>Yellow jasper; other colors not noted</td>
</tr>
<tr>
<td>5DA55*</td>
<td>Quartzite</td>
<td>6,150</td>
<td></td>
</tr>
<tr>
<td>5DA555*</td>
<td>Petrified wood, quartzite, jasper</td>
<td>6,170</td>
<td></td>
</tr>
<tr>
<td>5DA906*</td>
<td>Rhodonite</td>
<td>6,620</td>
<td></td>
</tr>
<tr>
<td>Dolores County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5DL311*</td>
<td>Chert</td>
<td>6,760</td>
<td>see 5MT10357</td>
</tr>
<tr>
<td>5DL352*</td>
<td>Gray quartzite</td>
<td>6,935</td>
<td>Ceramics also present</td>
</tr>
<tr>
<td>5DL152*</td>
<td>Quartzite</td>
<td>7,800</td>
<td>Pale whitish gray quartzite</td>
</tr>
<tr>
<td>Eagle County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5EA317</td>
<td>Red hematite</td>
<td>6,600</td>
<td>Rock art also present</td>
</tr>
<tr>
<td>5EA759</td>
<td>Chaledony</td>
<td>8,400</td>
<td>Similar to Kremmling chert</td>
</tr>
<tr>
<td>5EA782</td>
<td>Chaledony</td>
<td>8,820</td>
<td>Similar to Kremmling chert</td>
</tr>
<tr>
<td>Elbert County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5EL255*</td>
<td>Petrified wood</td>
<td>6,600</td>
<td>Brown-gold</td>
</tr>
<tr>
<td>El Paso County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5EP1298*</td>
<td>Petrified wood</td>
<td>6,380</td>
<td>Brown</td>
</tr>
<tr>
<td>Fremont County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Color/Characteristics</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5FN40</td>
<td>Yellow chest</td>
<td>6,900 Gray, brown, white, pink colors</td>
<td></td>
</tr>
<tr>
<td>5FN58</td>
<td>Chalcedony</td>
<td>0,050 Tan-yellow quartz; white, pink, red, purple, tan red</td>
<td></td>
</tr>
<tr>
<td>5FN64</td>
<td>Chert and quartzite</td>
<td>6,100 White, tan, gray chert; tan, pink, green, gray, white quartz</td>
<td></td>
</tr>
<tr>
<td>5FN72</td>
<td>Chert and chalcedony</td>
<td>7,480 “Jasper Hill”; red, yellow, black-colored</td>
<td></td>
</tr>
<tr>
<td>5FN17</td>
<td>Chert and quartzite</td>
<td>3,350 White, tan, gray chert</td>
<td></td>
</tr>
<tr>
<td>5FN54</td>
<td>Jasper and chalcedony</td>
<td>8,355-8,840 Brown, red, white, black, “translucent” jasper</td>
<td></td>
</tr>
<tr>
<td>5FN38</td>
<td>Jasper</td>
<td>8,000 Brown, red, yellow, variegated colors</td>
<td></td>
</tr>
<tr>
<td>5FN48</td>
<td>Quartzite</td>
<td>8,570-8,660 Red, brown, white, gray colors</td>
<td></td>
</tr>
<tr>
<td>5FN49</td>
<td>Pink quartzite</td>
<td>8,530 Tan, red, pink, gray, white colors</td>
<td></td>
</tr>
<tr>
<td>5FN63</td>
<td>Quartzite</td>
<td>8,630 Red, white, brown, tan, gray colors</td>
<td></td>
</tr>
<tr>
<td>5FN66</td>
<td>Basalt</td>
<td>8,040 Multicolored quartzites</td>
<td></td>
</tr>
<tr>
<td>5FN67</td>
<td>Chert, quartzite, chalcedony</td>
<td>7,160 Yellow, red, gray, mottled chert; red, pink, yellow chalcedony; multicolored quartzites</td>
<td></td>
</tr>
<tr>
<td>5FN19</td>
<td>Red quartzite and gray chert</td>
<td>6,080 Red, white, blue colors</td>
<td></td>
</tr>
<tr>
<td>5FN77</td>
<td>Chalcedony</td>
<td>9,960 Gray, white, tan, pink colors; obsidian also present</td>
<td></td>
</tr>
<tr>
<td>5FN78</td>
<td>Quartzite</td>
<td>9,000-9,040 Dark gray-black quartzite; red agatized jasper;</td>
<td></td>
</tr>
<tr>
<td>5FN85</td>
<td>Jasper and quartzite</td>
<td>7,960 “oatmeal chert” with quartzite inclusions</td>
<td></td>
</tr>
<tr>
<td>5FN67</td>
<td>Chert</td>
<td>9,150 Red and brown colors</td>
<td></td>
</tr>
<tr>
<td>5FN68</td>
<td>Chert</td>
<td>9,049 Butterscotch, maroon, white, gray, dark brown, olive colors</td>
<td></td>
</tr>
<tr>
<td>5FN70</td>
<td>Chert</td>
<td>9,100 Brown and maroon colors, similar to Tule Creek chert</td>
<td></td>
</tr>
<tr>
<td>5FN74</td>
<td>Andesite</td>
<td>9,251 Tan and purple colors</td>
<td></td>
</tr>
<tr>
<td>5FN75</td>
<td>Tan-brown chert</td>
<td>9,200 Yellow, olive, buff, gray, red, pink, brown, white colors in solid, motiled and banded types</td>
<td></td>
</tr>
<tr>
<td>5FN85</td>
<td>Chert</td>
<td>9,000 Gray, red, gold colors; solid, banded, motiled types</td>
<td></td>
</tr>
</tbody>
</table>

Grand County

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Color/Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGA5</td>
<td>Yellow-orange jasper</td>
<td>8,200-8,760 Table Mountain (TM) jasper</td>
</tr>
<tr>
<td>SGA7</td>
<td>Chalcedony, quartzite and petrified wood</td>
<td>7,400 Includes Krummling chert</td>
</tr>
<tr>
<td>SGA30</td>
<td>Quartzite</td>
<td>7,800-8,000 (KC: motiled and white-gray-brown)</td>
</tr>
<tr>
<td>SGA10</td>
<td>Quartzite</td>
<td>7,930 Reddish and gray colors</td>
</tr>
<tr>
<td>SGA19</td>
<td>Red Jasper</td>
<td>8,180 TM material</td>
</tr>
<tr>
<td>SGA20</td>
<td>Red Jasper</td>
<td>7,990 Quarry status questioned by Wheeler and Martin (1984-66)</td>
</tr>
<tr>
<td>SGA22</td>
<td>Petrified wood and jasper</td>
<td>8,160-8,220 Red, tan, banded green, blue colors</td>
</tr>
<tr>
<td>SGA28</td>
<td>Jasper</td>
<td>8,000-8,440 TM material</td>
</tr>
<tr>
<td>SGA29</td>
<td>Black petrified wood</td>
<td>8,200 Grassy, sie, excavated; obsidian artifacts present</td>
</tr>
<tr>
<td>SGA39</td>
<td>Red Jasper</td>
<td>8,200 TM material</td>
</tr>
<tr>
<td>SGA51</td>
<td>Red Jasper</td>
<td>8,200-8,295 Honey-brown petrified wood</td>
</tr>
<tr>
<td>SGA53</td>
<td>Chert and quartzite</td>
<td>8,120-8,226 KC material</td>
</tr>
<tr>
<td>SGA56</td>
<td>Chalcedony and chert</td>
<td>7,964 KC material</td>
</tr>
<tr>
<td>SGA58</td>
<td>Chert</td>
<td>7,760 KC material</td>
</tr>
<tr>
<td>SGA59</td>
<td>Chert</td>
<td>8,160 KC material</td>
</tr>
<tr>
<td>SGA95</td>
<td>Chert</td>
<td>7,400-7,760 KC material</td>
</tr>
<tr>
<td>SGA12</td>
<td>Jasper</td>
<td>8,040-8,180 TC material</td>
</tr>
<tr>
<td>SGA29</td>
<td>Gray-brown(? quartzite</td>
<td>9,200 TM material</td>
</tr>
<tr>
<td>SGA38</td>
<td>Yellow and red Jasper</td>
<td>8,000 TM material</td>
</tr>
<tr>
<td>SGA39</td>
<td>Yellow and red Jasper</td>
<td>8,000 TM material</td>
</tr>
<tr>
<td>SGA52</td>
<td>Gold and red Jasper</td>
<td>8,220 TM material</td>
</tr>
<tr>
<td>SGA23</td>
<td>Yellow and red Jasper</td>
<td>8,140 TM material</td>
</tr>
<tr>
<td>SGA65</td>
<td>White and honey-brown chert</td>
<td>7,920 KC material</td>
</tr>
<tr>
<td>SGA66</td>
<td>White chert</td>
<td>7,920 KC material</td>
</tr>
<tr>
<td>SGA63</td>
<td>Chert</td>
<td>7,350 KC material</td>
</tr>
<tr>
<td>SGA67</td>
<td>Chert, basalt, jasper, and</td>
<td>8,000 Includes KC and TM materials</td>
</tr>
<tr>
<td>Item Code</td>
<td>Description</td>
<td>N.A.</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>5G680</td>
<td>Perforated wood and jasper</td>
<td>7,920-8,000</td>
</tr>
<tr>
<td>5GA685</td>
<td>Gray quartzite</td>
<td>7,340-7,440</td>
</tr>
<tr>
<td>5GA846</td>
<td>Chert</td>
<td>7,650</td>
</tr>
<tr>
<td>5GA914</td>
<td>Chert</td>
<td>7,689</td>
</tr>
<tr>
<td>5GA923</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA977</td>
<td>Chert</td>
<td>7,460-7,500</td>
</tr>
<tr>
<td>5GA1092</td>
<td>Perforated wood, chert, quartzite</td>
<td>7,720</td>
</tr>
<tr>
<td>5GA1143</td>
<td>Chaledony, chert, quartzite</td>
<td>8,240</td>
</tr>
<tr>
<td>5GA1144</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1172</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1174</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1187</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1201</td>
<td>Tan and orange chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1242</td>
<td>Chert</td>
<td>8,000</td>
</tr>
<tr>
<td>5GA1852</td>
<td>Chert</td>
<td>8,000</td>
</tr>
</tbody>
</table>

Gunnison County

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>N.A.</th>
<th>Kansas</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>5GN1</td>
<td>Quartzite</td>
<td>7,680</td>
<td>7,140</td>
<td>One boulder quarried</td>
</tr>
<tr>
<td>5GN6</td>
<td>White-pink quartzite</td>
<td>7,570-7,600</td>
<td>7,140</td>
<td>White and yellowish white quartzites; white and white-banded cherts</td>
</tr>
<tr>
<td>5GN30</td>
<td>Quartzite</td>
<td>8,110</td>
<td>7,720</td>
<td>Brown, white, and green</td>
</tr>
<tr>
<td>5GN194</td>
<td>Red quartzite</td>
<td>7,720</td>
<td>7,720</td>
<td>Brown, white, maroon, and green</td>
</tr>
<tr>
<td>5GN203</td>
<td>Quartzite ()</td>
<td>7,720</td>
<td>7,720</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN220</td>
<td>Brown quartzite</td>
<td>7,650-7,670</td>
<td>7,720</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN339</td>
<td>Quartzite</td>
<td>9,520</td>
<td>9,520</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN340</td>
<td>Quartzite and chert</td>
<td>8,140</td>
<td>8,140</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN383</td>
<td>Red quartzite</td>
<td>8,320-8,320</td>
<td>8,140</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN397</td>
<td>Quartzite and chert</td>
<td>8,320-8,320</td>
<td>8,140</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN133</td>
<td>Chert</td>
<td>8,840</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN135</td>
<td>Brown and green chert</td>
<td>8,840</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN436</td>
<td>Gray quartzite</td>
<td>8,340</td>
<td>8,340</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN447</td>
<td>Chert</td>
<td>8,340</td>
<td>8,340</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN450</td>
<td>Reddish brown and green chert</td>
<td>8,840</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN814</td>
<td>Rhyolite</td>
<td>7,980-8,030</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN812</td>
<td>Gray quartzite</td>
<td>8,010-8,030</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN850</td>
<td>Gray quartzite</td>
<td>7,980-8,120</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN892</td>
<td>Yellow chert and gray quartzite</td>
<td>7,920-8,120</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN890</td>
<td>Tan chert and gray quartzite</td>
<td>7,980-8,040</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN992</td>
<td>Perforated wood</td>
<td>8,460-8,600</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN944</td>
<td>Quartzite</td>
<td>8,960-9,080</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN950</td>
<td>Quartzite</td>
<td>8,600-8,760</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN951</td>
<td>Gray and pink quartzite and granites</td>
<td>8,520-8,700</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN936</td>
<td>Tan and other quartzite</td>
<td>8,120-8,400</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN958</td>
<td>White quartzite</td>
<td>8,280-8,460</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN972</td>
<td>Quartzite and chaledony</td>
<td>7,880</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN988</td>
<td>Gray-white quartzite</td>
<td>8,460-8,500</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN989</td>
<td>Quartzite</td>
<td>8,220-8,400</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN1002</td>
<td>Jasper, quartzite, and petrified wood</td>
<td>8,120-8,200</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN1004</td>
<td>Quartzite</td>
<td>8,200-8,320</td>
<td>8,840</td>
<td>Brown, white, red-maroon, black colors</td>
</tr>
<tr>
<td>5GN1592</td>
<td>Reddish brown and white quartzite</td>
<td>8,720</td>
<td>9,420</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1744</td>
<td>Light brown rhyolite (?)</td>
<td>7,380</td>
<td>7,380</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1762</td>
<td>Quartzite</td>
<td>7,780</td>
<td>7,780</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1876</td>
<td>Quartzite</td>
<td>8,060</td>
<td>8,060</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1877</td>
<td>Quartzite</td>
<td>8,200</td>
<td>8,200</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1897</td>
<td>White, purple, red quartzite</td>
<td>8,040</td>
<td>8,040</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1898</td>
<td>White, red, pinkish quartzite</td>
<td>7,980</td>
<td>7,980</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN1899</td>
<td>White, red, purple quartzite</td>
<td>8,000</td>
<td>8,000</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN2051</td>
<td>Quartzite</td>
<td>8,080</td>
<td>8,080</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN2196</td>
<td>Gray quartzite</td>
<td>7,900</td>
<td>7,900</td>
<td>"Granular volcanic" rock</td>
</tr>
<tr>
<td>5GN2414</td>
<td>Quartzite and chert</td>
<td>8,000</td>
<td>8,000</td>
<td>"Granular volcanic" rock</td>
</tr>
</tbody>
</table>

[144] AP 122
<table>
<thead>
<tr>
<th>Segment</th>
<th>Description</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5GN2419</td>
<td>Quartzite and chert</td>
<td>8,045</td>
<td>White and gray quartzite; various chert colors including red</td>
</tr>
<tr>
<td>Huerfano County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5HF81</td>
<td>Unknown</td>
<td>7,180</td>
<td></td>
</tr>
<tr>
<td>5HF122</td>
<td>Quartzite</td>
<td>6,607</td>
<td></td>
</tr>
<tr>
<td>5HF133</td>
<td>Quartzite</td>
<td>7,260</td>
<td></td>
</tr>
<tr>
<td>5HF294</td>
<td>Gold and red quartzite</td>
<td>7,800–7,960</td>
<td></td>
</tr>
<tr>
<td>Hinsdale County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5HN7</td>
<td>Chert</td>
<td>11,200</td>
<td></td>
</tr>
<tr>
<td>5HN132</td>
<td>“Weak red” rhyolite</td>
<td>9,960</td>
<td></td>
</tr>
<tr>
<td>Jackson County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5JA1</td>
<td>Quartzite</td>
<td>8,340</td>
<td>Similar to cherts at SRT89</td>
</tr>
<tr>
<td>5JA2</td>
<td>Chert</td>
<td>8,900</td>
<td></td>
</tr>
<tr>
<td>5JA18</td>
<td>Quartzite</td>
<td>8,180</td>
<td>Brown cryptocrystalline rock</td>
</tr>
<tr>
<td>5JA25</td>
<td>Chert/petified wood and quartzite</td>
<td>8,250</td>
<td></td>
</tr>
<tr>
<td>5JA26</td>
<td>Petrified wood</td>
<td>8,250</td>
<td></td>
</tr>
<tr>
<td>5JA293</td>
<td>Petrifed wood</td>
<td>8,250</td>
<td></td>
</tr>
<tr>
<td>5JA320</td>
<td>Petrifed wood</td>
<td>8,180</td>
<td></td>
</tr>
<tr>
<td>5JA349</td>
<td>Chert, basalt, and quartzite</td>
<td>8,230</td>
<td></td>
</tr>
<tr>
<td>Jefferson County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5JV5</td>
<td>Petrifed wood, chert, and quartzite</td>
<td>5,880</td>
<td>Brown petrified wood, reddish brown quartzite, yellow-brown jasper</td>
</tr>
<tr>
<td>5JV8</td>
<td>Quartzite and chert</td>
<td>5,730</td>
<td></td>
</tr>
<tr>
<td>5JV9</td>
<td>Petrifed wood, chert, and quartzite</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>5JF169</td>
<td>Petrifed wood, quartzite, and jasper</td>
<td>6,035</td>
<td></td>
</tr>
<tr>
<td>5JP216</td>
<td>Quartzite</td>
<td>5,800</td>
<td></td>
</tr>
<tr>
<td>5FP77</td>
<td>Jasper and quartzite</td>
<td>6,000</td>
<td>Yellowish brown to maroon dominant</td>
</tr>
<tr>
<td>5F778</td>
<td>Jasper, chert/chalcedony and quartzite</td>
<td>6,000</td>
<td>Yellowish brown to maroon dominant</td>
</tr>
<tr>
<td>5FP779</td>
<td>Jasper and quartzite</td>
<td>5,960</td>
<td>Yellowish brown to maroon dominant</td>
</tr>
<tr>
<td>5F780</td>
<td>Quartzite, jasper, and petrified wood</td>
<td>6,000–6,020</td>
<td>Yellowish brown to maroon dominant</td>
</tr>
<tr>
<td>Las Animas County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5IA393*</td>
<td>Siltstone/argillite</td>
<td>6,340</td>
<td>Black chert; gray siltstone-argillite</td>
</tr>
<tr>
<td>Logan County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5LO34*</td>
<td>Chalcedony and chert</td>
<td>4,370</td>
<td>Flatsop Butte source</td>
</tr>
<tr>
<td>La Plata County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5LP29*</td>
<td>Quartzite</td>
<td>6,790</td>
<td>Anasazi potsherds present</td>
</tr>
<tr>
<td>5LP221*</td>
<td>Quartzite and chert</td>
<td>6,700</td>
<td></td>
</tr>
<tr>
<td>5LP277*</td>
<td>White and gray chert</td>
<td>11,200</td>
<td>White, gray, and red colors</td>
</tr>
<tr>
<td>5LP274*</td>
<td>Chert</td>
<td>11,160</td>
<td>Anasazi habitation present</td>
</tr>
<tr>
<td>5LP644*</td>
<td>Gray quartzite</td>
<td>6,197</td>
<td></td>
</tr>
<tr>
<td>5LP3880*</td>
<td>Chert, quartzite, and siltstone</td>
<td>6,150</td>
<td></td>
</tr>
<tr>
<td>LaVerne County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5LR47</td>
<td>Quartzite</td>
<td>5,500</td>
<td>Site form doesn’t match description by Kvanmee (1977)</td>
</tr>
<tr>
<td>5LR54</td>
<td>Unknown</td>
<td>5,540</td>
<td></td>
</tr>
<tr>
<td>5LR111</td>
<td>Unknown</td>
<td>6,440–6,480</td>
<td></td>
</tr>
<tr>
<td>5LR148</td>
<td>Sandstone</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>5LR299</td>
<td>Quartzite and chert</td>
<td>5,500</td>
<td>Red and white inclusions</td>
</tr>
<tr>
<td>5LR272</td>
<td>Quartzite and tan chalcedony</td>
<td>5,404</td>
<td>Tabular violet and gray colors with white linear inclusions</td>
</tr>
<tr>
<td>5LR955</td>
<td>Red chalcedony</td>
<td>5,200</td>
<td></td>
</tr>
<tr>
<td>5LR1490</td>
<td>Chert</td>
<td>7,080–7,180</td>
<td></td>
</tr>
<tr>
<td>Mesa County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5ME060*</td>
<td>White and gray chert</td>
<td>7,420</td>
<td>Clear, gold and tan colors</td>
</tr>
<tr>
<td>5ME061*</td>
<td>Chalcedony</td>
<td>9,980</td>
<td>Use of source questionable</td>
</tr>
<tr>
<td>5ME0001*</td>
<td>White quartzite</td>
<td>8,220</td>
<td></td>
</tr>
<tr>
<td>Mineral County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5ML62</td>
<td>Pink rhyolite</td>
<td>11,000–11,600</td>
<td>Also has site 5RN169; largest site in database</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Moffat County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5MF938*</td>
<td>Chalcedony and chert</td>
<td>6,704</td>
<td>Cross Mountain site; reddish brown, red, black and other colors; also has ceramics</td>
</tr>
<tr>
<td>5MF1674*</td>
<td>Chert</td>
<td>7,500</td>
<td>"Pumpkin" and red-white colors</td>
</tr>
<tr>
<td>5MF2672*</td>
<td>Chert</td>
<td>6,240</td>
<td></td>
</tr>
<tr>
<td>5MF2842*</td>
<td>Quartzite</td>
<td>5,380–6,180</td>
<td>Purple, maroon, red, and pink colors</td>
</tr>
<tr>
<td>5MF3461*</td>
<td>Chert</td>
<td>6,165–6,765</td>
<td>Yellow ("pumpkin"), brown, red, dark gray, green, purple color; also has ceramics</td>
</tr>
<tr>
<td>5MF3524*</td>
<td>Quartzite and chert</td>
<td>6,460</td>
<td>Purplish gray and white quartzite with yellow and red staining; chert colors not noted</td>
</tr>
<tr>
<td>Montrose County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5MN3416*</td>
<td>Quartzite</td>
<td>6,360</td>
<td>Brown mottled chert; tan quartzite</td>
</tr>
<tr>
<td>5MN3417*</td>
<td>Quartzite</td>
<td>6,200</td>
<td></td>
</tr>
<tr>
<td>5MN3429*</td>
<td>Quartzite and chert</td>
<td>6,400</td>
<td></td>
</tr>
<tr>
<td>5MN3488*</td>
<td>Quartzite</td>
<td>6,060</td>
<td></td>
</tr>
<tr>
<td>Montezuma County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5MT19239*</td>
<td>Chert</td>
<td>6,130</td>
<td>Mottled yellow color with black-brown bands and swaths; also has Anasazi ceramics</td>
</tr>
<tr>
<td>5MT9299*</td>
<td>Quartzite and chert</td>
<td>6,050</td>
<td>White, gray, reddish, and green quartzites; ceramics also present</td>
</tr>
<tr>
<td>5MT9801*</td>
<td>Quartzite</td>
<td>6,060</td>
<td>Also has site 5DI1425; pink and white quartzite; green welded tuff</td>
</tr>
<tr>
<td>5MT10357*</td>
<td>Welded tuff, quartzite and chalcedony</td>
<td>10,095</td>
<td></td>
</tr>
<tr>
<td>5MT10512*</td>
<td>Quartzite</td>
<td>6,650</td>
<td>Tan, green and red banded chert; cream-colored quartzite</td>
</tr>
<tr>
<td>5MT10574*</td>
<td>Oolitic chert and quartzite</td>
<td>6,170</td>
<td></td>
</tr>
<tr>
<td>5MT11633*</td>
<td>Quartzite and chert</td>
<td>6,200–6,260</td>
<td>White and brown chert; gray quartzitic sandstone</td>
</tr>
<tr>
<td>Park County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PA18</td>
<td>Petrified wood</td>
<td>8,700</td>
<td></td>
</tr>
<tr>
<td>5PA125</td>
<td>Deep red quartzite</td>
<td>8,945</td>
<td>Gold dendritic chert similar to Trout Creek source; pink and white quartzite; obsidian present</td>
</tr>
<tr>
<td>5PA148</td>
<td>Agate</td>
<td>9,140</td>
<td></td>
</tr>
<tr>
<td>5PA486</td>
<td>Chert and quartzite</td>
<td>9,200</td>
<td></td>
</tr>
<tr>
<td>5PA521</td>
<td>Jasper, chalcedony</td>
<td>9,150</td>
<td></td>
</tr>
<tr>
<td>Pitkin County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PTB7</td>
<td>Chert, chalcedony</td>
<td>8,080</td>
<td>White chert-chalcedony, resembles Kremmling chert</td>
</tr>
<tr>
<td>5PTB8</td>
<td>Chert, chalcedony</td>
<td>8,060</td>
<td>White chert-chalcedony, resembles Kremmling chert</td>
</tr>
<tr>
<td>Rio Blanco County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5RB1719*</td>
<td>Tan silstone</td>
<td>6,200</td>
<td>Tan and banded gray-brown colors</td>
</tr>
<tr>
<td>5RB1723*</td>
<td>Tan silstone</td>
<td>6,120</td>
<td>Tan and banded gray-brown colors</td>
</tr>
<tr>
<td>5RB1726*</td>
<td>Silstone</td>
<td>6,000</td>
<td>Tan and banded gray-brown colors</td>
</tr>
<tr>
<td>5RB1729*</td>
<td>Silstone</td>
<td>6,160</td>
<td>Brown algalitic chert; brown and gray solid chert; tan silstone; obsidian also present</td>
</tr>
<tr>
<td>5RB1730*</td>
<td>Silstone</td>
<td>6,260</td>
<td></td>
</tr>
<tr>
<td>5RB2856*</td>
<td>Chert and silstone</td>
<td>7,280–7,360</td>
<td></td>
</tr>
<tr>
<td>Rio Grande County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5RN169</td>
<td>Jasper</td>
<td>8,100</td>
<td>See 5ML62</td>
</tr>
<tr>
<td>5RN262</td>
<td>Chert/jasper</td>
<td>8,940</td>
<td>Gold, orange, brown, and red colors</td>
</tr>
<tr>
<td>Rout County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5RT32</td>
<td>Basalt</td>
<td>9,650–9,725</td>
<td>Yellow-brown and white-clear colors, the latter similar to Kremmling chert and to cherts at 5J422</td>
</tr>
<tr>
<td>5RT39</td>
<td>Chert</td>
<td>8,720</td>
<td>Also has site 5RT48</td>
</tr>
<tr>
<td>5RT41</td>
<td>White quartzite</td>
<td>10,400</td>
<td></td>
</tr>
<tr>
<td>5RT43</td>
<td>Chalcedony</td>
<td>7,300</td>
<td></td>
</tr>
<tr>
<td>5RT44</td>
<td>Chalcedony</td>
<td>7,180</td>
<td></td>
</tr>
<tr>
<td>County</td>
<td>Location</td>
<td>Type</td>
<td>Color/Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>San Joaquin</td>
<td>SJA167</td>
<td>Gray chert</td>
<td>8,840 On Continental Divide</td>
</tr>
<tr>
<td>Saukache County</td>
<td>3SH1113</td>
<td>Green chert</td>
<td>11,680 Green, gold and brown colors; on Continental Divide</td>
</tr>
<tr>
<td></td>
<td>3SH1114</td>
<td>Chert</td>
<td>11,680 Red and gold Jasper; cream-colored chert</td>
</tr>
<tr>
<td></td>
<td>3SH1125</td>
<td>Jasper and chert</td>
<td>11,000 Cochetopa Dome source; no artifacts observed</td>
</tr>
<tr>
<td></td>
<td>3SH1318</td>
<td>Gray-black obsidian</td>
<td>9,000 Cochetopa Dome source; no artifacts observed</td>
</tr>
<tr>
<td></td>
<td>3SH1319</td>
<td>Gray-black obsidian</td>
<td>8,970 Cochetopa Dome source; no artifacts observed</td>
</tr>
<tr>
<td>San Miguel</td>
<td>5SM904*</td>
<td>Chalcedony, chert, quartzite, siltstone</td>
<td>6,080-6,180 Gray quartzite; other colors not noted</td>
</tr>
<tr>
<td></td>
<td>5SM209*</td>
<td>White quartzite</td>
<td>7,600 Gray and tan quartzite; green and mottled gray-tan chert</td>
</tr>
<tr>
<td></td>
<td>5SM205*</td>
<td>White quartzite</td>
<td>6,360 Gray and white quartzite; gray, white and green chert</td>
</tr>
<tr>
<td></td>
<td>5SM2116*</td>
<td>Chert and quartzite</td>
<td>6,480 Gray and white quartzite; gray, white and green chert</td>
</tr>
<tr>
<td></td>
<td>5SM2124*</td>
<td>Chert and quartzite</td>
<td>6,850 Gray and white quartzite; gray, white and green chert</td>
</tr>
<tr>
<td></td>
<td>5SM2412*</td>
<td>White quartzite</td>
<td>7,050 Gray and white quartzite; gray, white and green chert</td>
</tr>
<tr>
<td></td>
<td>5SM2631*</td>
<td>Quartzite</td>
<td>7,000 Includes gray-tan mottled type</td>
</tr>
<tr>
<td></td>
<td>5SM2636*</td>
<td>Gray quartzite</td>
<td>7,250 Gray, red-gray, green, gray-green, white and red chert; gray, white and pink-gray quartzite</td>
</tr>
<tr>
<td></td>
<td>5SM2668*</td>
<td>Chert and quartzite</td>
<td>6,800 Gray, red-gray, green, gray-green, white and red chert; gray, white and pink-gray quartzite</td>
</tr>
<tr>
<td></td>
<td>5SM2672*</td>
<td>Red chert</td>
<td>6,800 Other colors present</td>
</tr>
<tr>
<td></td>
<td>5SM2673*</td>
<td>Chert</td>
<td>6,800 Off-white and greenish gray colors</td>
</tr>
<tr>
<td>Teller County</td>
<td>5TL101</td>
<td>White chert</td>
<td>6,240</td>
</tr>
</tbody>
</table>

* = site outside 29 mountain counties
** = color specified if known (see Comments for diverse colors)
[additional details on individual sites available upon request]

AP 122 [147]
References Cited

Baker, S. G., and M. Sanburg
1993

Baldwin, G. C., C. R. Scoogin, and C. Setzer
1947
Jumps and Goose River Archaeological Reconnaissance. On file with the Antiquities Section, Utah Division of State History, Salt Lake City.

Barnforth, D. B.
1994

Barlow, K. R., and D. Metcalfe
1993
1993 Archaeological Excavations at Joy Valley Alcove, University of Utah Archaeological Center Reports of Investigations 93-1. Salt Lake City.

Basgall, M. E.
1989

Basgall, M. E., and M. A. Giambastiani
1992

Basgall, M. E., and K. R. McGuire
1988
The Archaeology of CALVIN: Prehistoric Culture Change in the Southern Owens Valley, California. Far Western Research Group, Inc., Davis, California.

Bass, W. M.
1993

Beck, M. W.
1996
On Discerning the Cause of Late Pleistocene Megafaunal Extinctions. Palaeoecology 22:91-104.

Bebrenseyneyer, A. K.
1984

Bebrenseyneyer, A. K., and A. Hill (editors)
1980

Bender, S. J.
1983

Bender, S. J., and G. A. Wright
1981

Benedit, J. B.
1981

1985

1990
Archeology of the Cone Creek Valley, Colorado Front Range Center for Mountain Archeology, Research Report No. 5, Ward, Colorado.

1992

Benedit, J. B., and B. L. Olson
1981

Bergstrom, M. W.
1989

Berry, C. E., and M. S. Berry
1986

Berry, M.
1982
Time, Space and Transition in Anasazi Prehistory. University of Utah Press, Salt Lake City.

Bettinger, R. L.
1977

1989

1994

1996

1996

1992

1999

How, When, and Why Numinic Spread. In Across the West: Human Population Movement and the Expansion of...

Cresman, S. D. 1998 "Archaeological Investigations in the Canyon Pintados Historic District, Rio Blanco County, Colorado. Reports of
the Laboratory of Public Archaeology No. 34: Colorado State University, Fort Collins.

Creasman, S. D. and L. J. Scott

Creasman, S. D. and K. W. Thompson

Cummins, L. S.

Current, W.

Curry, D. R.

Darlington, D. G. and A. Cohn

Davenport, L. A., R. N. Holmer, and M. Horne-Sorenson
1981 Test Excavations: Sixteen Prehistoric Sites along the MAPCO Rocky Mountain Liquid Hydrocarbon Pipeline. Archaeological Center Reports of Investigations 60-12. Department of Anthropology, University of Utah, Salt Lake City.

Davis, L. B., S. A. Ashberg, M. Wilson, and R. Ottersberg

Davis, O. K. I., J. Agnew, P. S. Martin, and J. J. Mead

Dawson, L. W.

Day, K. C.

Day, K. C. and D. S. DiBible

DeDecker, M.

Delacorte, M. G.

Delacorte, M. G. and K. R. McGuire

Devine, J.

DiBible, D. S. and K. C. Day

DiBernardo, R. and J. V. Taylor

Dillehay, T. D.
1999 Monte Verde: A Late Pleistocene Settlement in Chile. In vol. 1, Palaeoenvironment and Site Context. Smithsonian Institution Press, Washington, D.C.

Donovan, C. M. and G. A. Brooks

AP 122 [199]
Drennan, R. D.

Durrant, S. D.

Eckerle, W. P.

Eckerle, W. P. and J. Hobey

Eckerle, W. P.

Egan, H. R.
1917 *Pioneering the West 1846 to 1876, Major Howard Egan's Diary*, edited by W. M. Egan. Skeleton Publishing, Salt Lake City, Utah.

Ellis, S. A.

1966 Late Pleistocene and Holocene Seasonal Temperatures Reconstructed from Fossil Beetle Assemblages in the Rocky Mountains. *Quaternary Research* 2:311-318.

Ellis, S. A. and N. E. Williams
1989 The Insect Fossil Assemblage Associated with the Huntington Mammoth. Manuscript on file, Utah Division of State History, Salt Lake City.

Elliot, D.K. (editor)

Elbs, A. B.

Elston, R. G., and C. Raven (editors)

Emile, S. D.

Falconer, H.

Fall, P. L.

Finneman, N. M.

Ferguson, C. W., Jr.

Fewkes, J. W.

Fike, R. E.

Finnegan, M.

Fiorellino, A. R.

Fisher, J. W., Jr.

Foley, L. L., R. A. Martin, Jr., and J. T. Sullivan
1986 *Appendix A: Sr-Isotopic Study for Joes Valley, Scofield and Huntington North Dams, Emery County and Scofield Projects, Utah. In Quaternary Geology and Chronology of the Northern Great Valley*
Gowan, U.S. Bureau of Reclamation Seisnotec-

Fowler, C. S. 1986

Fowler, C. S. (compiler and editor) 1989
Wilard E. Park's Ethnographic Notes on the Northern Pales of Western Nevada, 1923-1944. vol. 1, University of Utah Anthropological Papers No. 114. Salt Lake City.

Fowler, C. S., and N. P. Walter 1985

Francis, J. E. 1988
A Class III Cultural Resource Inventory, Pinedale-Daniel Junction-Canyon Project. Wyoming Project PREE-0137-
2641). AEP 105-3-1162, Sublette County, Wyoming Office of the Wyoming State Archaeologist, Laramie. Submitted to the Wyoming Highway Department, Cheyenne.

1990

Francis, J. E. 1990a
A Class III Cultural Resource Inventory of the Pinedale-Daniel Junction Road, Pinedale West Section, Wyoming Project PREE-0137-2657, Sublette County, Wyoming Office of the Wyoming State Archaeologist, Laramie. Submitted to the Wyoming Department and Transportation, Cheyenne.

1990b

1991c
The Structures of the Seeley Site, the oldest archaeological site in Wyoming. Wyoming State Museum, Laramie.

Francis, J. E., and K. M. Groesner 1995

Francis, J. E., L. Loendorf, and R. L. Dorn 1993

Francis, J. E., and M. E. Miller 1993
They Are's Just Foragers Anymore: New Perspectives on Early Archaic Adaptations in the Up-

Francis, J. E., D. N. Walker, R. Babcock, and K. Groesner 1987
Archaeological Investigations at 9BS1354, Cape Rock-
shelter: Emergent Occupation in the Northern Green River Basin, Wymond Office of the Wyoming State Ar-

Frison, G. C. 1993

1973
The Windell Buffalo Trap. 38:34. Excavation Proc-

1976

1981

1983
The Lookingbill Site, Wyoming. 38:350-0. Teton 201-196.

1988
Paleoinden Subsistence and Settlement during Post-Clovis Times on the Northwestern Plains, the Adjacent Mountain Ranges and Intermountain Basins. In Americans Before Columbus: Eco-Age Origi-

1991
Predators Hunters of the High Plains. 2nd edition. Aca-
demic Press, New York.

Frison, G. C., and D. C. Geor 1990
Prex-Stemmed: A Specialized Paleoinden Oc-

1993

1994
The Dead Indian Creek Site: An Archai Occupation in the Absaroka Mountains of Northeastern [sic] Wyoming Introduction. Wyoming Archae-
ological 27(3):1-12.

Ethnoarchaeological Approaches to Mobile Campsites. Interna-
tional Monographs in Prehistory; Ethnoarchaeological Series No. 1. Ann Arbor, Michigan.

Geib, P. R., and M. M. Layles 1998
1962 Plateau Shoshonean Prehistory: A Suggested Re-
1969 The Fremont Culture: A Study in Culture Dynamics on the
Northern Arapaho Frontier. Papers of the Peabody
Museum of Archaeology and Ethnology 59:2.
Harvard University, Cambridge, Massachusetts.

Hagat, I. K.
1976 aCRI—Draper Cave. Excavation and Research
Hakel, B., N. Hakel, J. C. Mackey, T. Reest, and R. Laurent
1987 The Archeoy Site (48SW328): A Uinta Fremont
Campsite in Southwest Wyoming. Southwestern
Nat. 53:21-22.

Haley, S. D.
1992 Archaeological Survey and Test Excavations at Two Site:
Central Syllable Area, Uinta Plateau 1986. Manti-La
Sal National Forest Supervisor's Office, Price, Utah.
1993 Archaeological Research in the Central Syllable Area: High
Elevation Survey on the Wasatch Plateau 1993. Manti-
La Sal National Forest Supervisor's Office, Price, Utah.

Hand, O. D., and J. Gooding
1980 Excavations at Dossero, 35ArA2. Southwestern Nat.

Hansen, R. M.
1986 Late Pleistocene Plant Fragments in the Dunes of
Herbivores at Coyote Cave. In Coyote Cave, by
J. D. Jennings, pp. 179-189. University of Utah
Archaeological Papers No. 204. Salt Lake City.

Harding, W. and L. McNees
1992 Site 48SW991. In Data Recovery Investigations at the
Black Butte and Loniely Hills Mine Permit Area, Sweet
water County, Wyoming vol. 3 (sections 10-0'-18.0), by
L. M. McNees et al., pp. 11-15. Submitted to Black Butte Coal Company, Mariah Associates,

Harrell, L. L.
1986 Faunal Analysis. In The Manor Ranch Site: Archic
and Late Prehistoric Habiitation in Southwest Wyoming,
by L. L. Harrell and S. T. McKern, Appendix C.
Archaeological Services, Western Wyoming Col-
lege, Rock Springs.
1988 Appendix E. Analysis of Animal Remains. In The
Talesfrom Site: 5000 Years of Prehistory in Southwest

Harrell, L. L., and S. McKern
1986 The Manor Ranch Site: Archic and Late Prehistoric
Habitation in Southwest Wyoming. Cultural Re-
source Management Report No. 18. Western Wyoming
College, Rock Springs.

Harrell, L. L., and A. Swenson
1986 Faunal Analysis. In Archaeological Data Recovery at
Site 48SW242: LaBarge Natural Gas Project, by T.
Hoefner III, Appendix C. Cultural Resource Man-
agement Report No. 21. Archaeological Services,
Western Wyoming College, Rock Springs.

Hart, J.
1976 Montana Native Plants and Early Peoples. Montana
Historical Society and the Montana Bicentennial
Administration, Helena.

Hauk, F. R.
Creek-Texas Mountain Localty of the Río Blanco County,
Colorado. Archaeological-Environmental Research
Corporation Paper No. 50. Bountiful, Utah.

Hauk, F. R., and L. M. Harmon
1977 The Central Coal Project of Utah. Archaeological-Envi-
ronmental Research Corporation, Salt Lake City, Utah.
Manit-La Sal National Forest Supervisor's Office,
Price, Utah.

Hayes, C. E.
1984 Prehistoric Utilization of Chert Resources in the
Southern Flin: Hills of Kansas. In Prehistoric Chert
Explorations: Studies from the Missouri, edited by
B. M. Butler and L. E. May, pp. 87-90. Center
for Archaeological Investigations, Occasional Pa-
per No. 2. Southern Illinois University, Carbondale.

Hawkes, K., J. F. O'Connor, and N. G. Blanton-Jones
1989 Hardwatering Hadza Grandmothers. In Compara-
tive Sociobiology: The Behavioral Ecology of Humans and
Other Mammals, edited by V. Stanescu and R. A. Bos-
lley, pp. 341-360. Blackwell Scientific Publications,
Boston, Massachusetts.

Haynes, G. V.
1981 The Geology and Paleohydrological Evidence for a
Clovis-Age Drought in North America and its

Haynes, G.
1986 Spiral Fractures and Cut Mark-Mimics in Non-
cultural Elephant Bone Assemblages. Canwest Re-
sarch in the Pleistocene 3:45-46.

Heinrich, P. V.
1984 Petrographic Analysis of Jasper From 5C814,
Chaffee County, Colorado. Appendix C. In A Cul-
tural Resource Evaluation of Site 5C814, Salida Ranger
District, Pila and Sun Isabel National Forests, Colorado,
by C. Chandler et al., pp. 97-106. USDA Forest
Service Office, Pueblo, Colorado.

Hendry, M. H.
1983 Indian Rock Art of Wyoming. Privately published by
M. H. Hendry, Lost Cabin Route, Lysite, Wy-
oming.

Heizer, R. F., and M. A. Baumhoff
1992 Prehistoric Rock Art of Nevada and Eastern California.
University of California Press, Berkeley.

Hildebolt, C. F., W. P. Murphy, D. I. Rasmussen, and A. M.
Harendza
1994 Skeletal Remains of 8000-Year-Old North Ameri-
can. American Journal of Physical Anthropology (sup-
plement) 83-107.

Hill, D. V.
1991a Petrographic Analysis of a Sherd from Marigold
Cave. Manuscript on file, Bureau of Land Man-
agement, Vernal, Utah.

1991b Petrographic Analysis of Selected Ceramics from
Dinosaur National Monument. Manuscript on
file, Bureau of Land Management, Vernal, Utah.

1972 Nutritive Values of Native Foods of Warm Springs Indi-

AP 122 [203]
in the Southern Opiparish Mountains Tomo County, Utah. Brigham Young University Museum of Peoples and Cultures Technical Series No. 85-37, Provo, Utah.

1994 Janetski, J. C., R. C. Crosland, and J. D. Wilde

1994 Janetski, J. C., and L. T. Naata

1995 Jennings, J. D.

1981 Jennings, J. D., and D. Sammons-Lohr

1992 Johnstone, A.

1992 Jones, C. H.

1991 Jones, K. T., and K. E. Jochl

1991 Exploring the Fremont. Utah Museum of Natural History, University of Utah, Salt Lake City.

1991 Jones, K. T., and D. B. Madsen

1991 Kay, C. E.

1970 Keefer, W. R.

1976 Keefer, W. R.

1976 Kelly, J. T.

1991 Kelly, R. L.

1975 Keyser, J. D.

1982 Rock Art of Western North Dakota and the North Fork Hills, South Dakota. South Dakota Archaeological Society No. 9, Augustana College, Sioux Falls, South Dakota.

1994 Knight, D. H.

1979 Koch, P. L.

1982 Kozma, T. E.

1985 Kornfeld, M., and J. C. Todd (editors)

AP 122 [205]
Kacera, T. E. 1993

Küchler, A. W. 1966

1977

Kurten, B. 1967

Kramme, K. L. 1977

LaPoint, H. 1987

Archaeological Inventory in the Canyon Pintado Historic District, Rio Blanco County, Colorado. Reports of the Laboratory of Public Archaeology No. 53. Colorado State University, Fort Collins.

Larsen, C. S. 1987

Larson, M. L., M. Kornfeld, and D. J. Rapsom 1995

Larson, P. R. 1996

Lattad, W. R., Jr., L. Hinze, and R. F. Scott 1994

Laundeman, P. 1975

Laws, R. M. 1966

Leach, L. L. 1966

1970

Lee, R. B. 1979

Leh, L. L. 1937

Lessard, T., and D. G. Ecles 1989

Lewis-Williams, J. D. 1982

1984

Liesman, T. L. 1985

Lindsay, L. W. 1986

Loomis, T. L., and K. Porche 1987
The Rock Art Sites of Carbon County, Montana. Contribution No. 244. Department of Anthropology, University of North Dakota, Grand Forks.

Loose, B. 1997

Loosle, R. L., B. Broadhead, and L. Ingram 1993

Love, G. M. 1975

1977

Marwitt, J. P. 1970a Medan Village and Fremont Culture Regional Variation. University of Utah Anthropological Papers No. 95, Salt Lake City.

1995 The Barnes Site (48LN390): A Late Prehistoric Rim Minute in the Western Wyoming Basin. Western Wyoming College Contributions to Archaeology No. 7, Rock Springs.

Preservation Office, Cultural Records Office, Laramie.

Metcalf, D. 1986 Storage Versus Caching. Invited lecture at the Department of Anthropology, University of Utah, Salt Lake City.

1992 Lithic Resources. In Geology in Archaeology: Geology, Paleolimnology, and Ar-

cal Association Publication 16. Salt Lake City, Utah.

Nicolson, A. S.
1968
An Archaeological Inventory of a Proposed Nine Mile Canyon Road Upgrade from Wellington to the Soldier Creek Mine, Carbon County, Utah. Manuscript on file with the Bureau of Land Management, Price, Utah.

Nitecki, M. H. (editor)
1984

Oakley, K. P.
1996

Oberhansley, G. G.
1980
Geology of the Fairview Lakes Quadrangle, Sanpete County, Utah. Brigham Young University Geology Studies 25:183-95.

1983

O’Connell, J. F., K. H. Hawkes, and N. G. Burton-Jones
1988

1999

1992

Odion, D. C., R. M. Callaway, W. R. Ferren, Jr., and F. W. Davis
1992

Office of Archaeology and Historic Preservation
1996
A Profile of the Cultural Resources of California. Colorado Historical Society, Denver.

Oliver, J. S.
1984

Orians, G. H., and N. L. Pearson
1979

Orten, D. J., and G. J. Potshar
1981
Identification of Pathological Conditions in Human Skeletal Remains. Smithsonian Contributions to Anthropology No. 28. Washington, D.C.

Osborn, A.
1993
Snowblind in the Desert Southwest: Moisture Islands, Upland Ecology, and Alternative Prehis-}

Owen, J. E. and J. R. Merrick
1994

Passmore, R., and J. V. G. A. Durbin
1995

Pearson, G. A.
1931

Pedersen, D. G., G. M. Van Dyne, R. W. Rice, and R. M. Hansen
1974

Phillips, H. B.
1990

1992
Site 42Un6085. Site form on file, Utah Division of State History, Salt Lake City.

Phillips, H. B., and J. Brunsmann
1984

Pool, K.
1997

Piper, V. S.
1988

Powell, D. R., and H. E. Klieforth
1991

Pratt, P. P.
1859

Price, R., and R. B. Evans
1937

Randalls, Q.
1949

Rapsom, D. J., M. Korsfeld, and M. L. Larson
1995

AP 122 [211]
Ray, V. F.
1933

1942
Culture Element Distributions: XXII, Plateau, University of California Anthropological Records 19(2).

Raymond, A. W., and E. Sobel
1969

Reagan, A. B.
1931a

1931b

1933

1934b

1936

1941

Reed, A. D.
1944

1944b

1945
A Sample-Oriented Cultural Resource Inventory in Canon City and Sante Fe Counties, Utah. Report prepared for the Bureau of Land Management, Nickens and Associates, Montrose, Colorado.

Reeve, S. A.
1936

Reidhead, V. A.
1976
Optimization and Food Procurement at the Prehistoric Leonard Lake Site, Southeastern Indiana: A Linear Programming Approach. Ph.D. dissertation, Department of Anthropology, Indiana University, Bloomington.

Reiss, D.
1983

1982

Reust, T. P., D. Newcomb, and B. Hakiel
1986

Reust, T. P., E. Newton, R. Weathermon, W. Harding, and C. Smith
1993

Rhode, D.
1990

Robert, H.
1975

1989

Rood, R. J.
1992

Rood, R. J., V. L. Butler, and M. Newman
1995

Rowen, E.
1960
The Dossero Burial. 5EA128. Southwestern Late 400–250 B.C.

Ruth, J. R.
1953

Sanders, P. H.
1992
Archaeological Investigations along the Paul Omille River: Site 42PO31. Project Report No. 18, Center for Northwest Anthropology, Department of Anthropology, Washington State University, Pullman.

1993

Sanders, P. H., M. Kornfeld, M. L. Larson, S. A. Chombo, M. McFad, and M. C. Thompson
1983

1989

Stafford, T. W., Jr., R. W. Graham, H. A. Semkens, Jr., and J. Southam 1967 Chronology and Timing of the Terminal Pleis-
tocene Extinction Event in the Mid-Latitudes of North America. Paper presented at the 7th Interna-
tional Thrombolytic Congress. Acapulco, Mex-
ico.

ley.

1938 Basin Plateau Aboriginal Sociopolitical Groups. Bureau of American Ethnology Bulletin No. 120. Wash-
ington, D.C.

1987 A Consideration of the Numic Spread. Ph.D. disserta-
tion, Department of Anthropology, University of California, Riverside.

1994 Rodent Utilization in the Great Basin: Ethno-
graphic and Archaeological Perspectives. Paper presented at the 59th Annual Meeting of the Soci-
ety for American Archaeology, Anaheim, Californ-
ia.

Talbot, R. K., S. E. Billas, L. D. Richens, D. Southworth, T. Chris-
temen, D. Richards, and J. D. Wilde 1999 A Cultural Resource Inventory of the Proposed West Pipeline through the State of Utah. Brigham Young University Museum of Peoples and Cultures Technical Series No. 90-10, Provo, Utah (draft report).

Tanner, R. L. 1982 Appendix B: Analysis of Faunal Remains from 48SW263. In The Paradise Ridge Site (48SW263), by A. D. Gardner, K. Harvey, J. Newberry-Crew-
man, D. Kullen, and T. Hoofr III, pp. 84–96. Submitted to Pacific Power and Light. Archaeo-
logical Services, Western Wyoming College, Rock Springs.

1939 The Salishan Tribes of the Western Plateau. Forty-

Thomas, D. H. 1972 Western Shoshone Ecology: Settlement Patterns and Beyond. In Great Basin Cultural Ecology: A Sym-
Desert Research Institute Publications in Social Sciences, Reno, Nevada.

1982

1983

1984

2000

Thomas, D. H., L. S. A. Predleton, and S. C. Cappannari
1986

Thompson, K. W.
1991

Thompson, K. W., and J. V. Pastor
1995

Thompson, P. J.
1993

Thorn, A. V.
1989

Thornburg, W. D.
1965

Ting, P. C.
1966
North American Indian Fishing Sinners. Western Collector 4(10).

Tomarche, G. W., and G. K. Hueter
1970

Trotter, M., and G. C. Glaser
1957

1938

Truesdale, J. A.
1989
Archaeological Investigations along the Echo Park Road, Dinosaur National Monument, Moffat County, Colorado. On file, Dinosaur National Monument, Dinosaur, Colorado.

1990

1991
Results of Data Recovery at Juniper Ledge Shelter (48Un1724). On file, Dinosaur National Monument, Dinosaur, Colorado.

1992
Analysis and Determination of Archaeological Value for Human Remains and Associated Artifacts Vandalized from 42W20112. Red Fleet Reservoir State Park, Uintah County, Utah. On file, Uintah County Sheriff's Department, Vernal, Utah.

1993

Truesdale, J. A., and D. V. Hill
1999

Tucker, G. C., Jr.
1985

1986

Turner, D. R.
1968

1990

Turpin, S. A. (editor)
1994

Turner, N. C., and M. A. Bell
1971

Turner-High, H. H.
1937

Tweto, O. (compiler)
1979

Tyler, S. L.
1951
Before Ecological An Early History of the Yuta Indians.

Webster, G. S. 1978 Dry Creek Rockshelter: Cultural Chronology in the Western Snake River Region of Idaho. 41590.110.1190.1006. Teton 153–35.

Wilde, J. D., D. E. Newman, and A. E. Godfrey 1986 The Late Archaic/Early Formative Transition in Central Utah: Pre-Pendant Corn from the Elston Burial Site, Sevier County, Utah. Brigham Young University Museum of Peoples and Cultures Technical Series No. 86.90. Provo, Utah.

AP 122 [217]
Woods, J. C.

Woods, J. C., and G. Tierra
1986 Chipped Stone Tools from the Huntington Mammoth Locality. Manuscript on file, Utah Division of State History, Salt Lake City.

Wormington, H. M.

Wright, G. A., S. Bender, and S. Reeve

Wright, G. A., R. Prouse, and T. Koenig

Wydeven, A. P., and R. B. Dahlgreen

Yellen, J. E.

Yoakum, J.
1980

Zeanah, D. W.
1990

Zer, C. J.
1982

Pre-Village Alpine Land Use in the White Mountains California. Paper presented at the 55th Meeting of the Society for American Archaeology, Las Vegas, Nevada.
