THE FIRST ROCKY MOUNTAINEERS

Coloradans before Colorado

Marcel Kornfeld
Early Americans of the High Country

The high-altitude Middle Park at the headwaters of the Colorado River is emerging as a major Paleoindian region with evidence of Folsom, Cody, Allen, Western Stemmed tradition, and other Paleoindian cultural complexes (Kornfeld et al. 1994; Kornfeld and Frison 2000; Nae 1986). From the 1970s through today, Paleoindian research has exploded, not only in Middle Park but throughout the Rocky Mountains, including the Canadian Rockies, and in some cases in relatively high reaches of this physiographic province. The investigations by Nae (1994), Jodry (1999a), Stanford (Jodry and Stanford 1993), Pitblado (2005), Davis and colleagues (1988), Frison (1991), Benedict (1992a, b), Johnson and colleagues (2004), Stiger (2006), Landals (2008), and others provide the first significant glimpses of Paleoindian occupation of this region. It should be noted that many others have contributed to our understanding of the Paleoindian occupation of the Rockies; although such studies have not been as extensive or focused on the Paleoindian period, they contribute a wealth of relevant data (e.g., Vierra 2011; Vierra et al. 2012; Black 1986; Johnson and Pastor 2005; Suero and Waguespack 2007). It should also be noted that while large portions of the Rocky Mountains are covered by these studies, only a few areas have been investigated intensively and no systematic, thorough investigation has occurred in any area of substantial size. Perhaps the most systematic regional studies are the work of Pitblado through-out the Southern Rockies and adjacent provinces, Jodry in the San Luis Valley of Colorado, and our own in the Middle Park of Colorado, the latter two also within the Southern Rocky Mountains.

In this chapter I begin with a summary of the research presented, or rather with a synopsis of Middle Park Paleoindian prehistory. Based on the argument that the Paleoindian populations of Middle Park represent adaptations to cold, high-latitude conditions, as was argued in Chapter 1, the nature and evidence for that adaptive strategy are synthesized in the next section. These two summary sections set the stage for evaluating Middle Park in the larger context of continent-wide Paleoindian adaptations, including such variation as settlement, subsistence, and mobility. The chapter concludes with a narrative that fleshes out the archaeological record. Whether such narratives just put faces on prehistoric people, as Tringham has suggested (1991), or whether they serve as imaginative sources of future hypotheses, as Taylor (1948) may have seen them, they provide a dynamic perspective on Paleoindian peoples and their culture.

Middle Park Recap
Many Paleoindian localities have been encountered in Middle Park. To learn about them, we engaged in systematic recording of diagnostic Paleoindian artifacts and excavation of a handful of sites. The recording generally proceeded during fieldwork or special recording sessions.
over a period of more than 20 years. The chronologically diagnostic artifacts are, of course, mostly projectile points, but Folsom channel flakes and some preforms were also recorded since they can be securely assigned to a known cultural complex. Additionally, selected specimens such as spurred scrapers and gravers were included, although their age cannot be assigned with the same confidence to a specific time other than a generalized Paleoindian or most likely Paleoindian period.

The result of the systematic recording of chronologically diagnostic artifacts is a sample of more than 530 objects from 113 sites and representing 166 components. This sample rivals similar systematically collected samples from other regions and forms a comparative database of Paleoindian materials for the Rocky Mountains.

The Middle Park Paleoindian Projectile Point Database (MPPPPD) shows that the entire Paleoindian time period is represented by the diagnostic artifacts, although not equally. That is, occupation appears most intensive during Goshen, Folsom, Allen, and Cody times and least intensive during Deception Creek, Foothill/Mountain, Midland, and Agate Basin times, assuming that the number of diagnostic artifacts can be read in this way. It is also possible that this variation measures changes in hunting strategies or even that it is an artifact of sampling. Assuming occupational intensity, we see some differences in comparison with other regions. In particular, the Alder/Angostura groups are underrepresented compared with the Southern Rockies as a whole, the same situation as in the San Luis Valley, while Folsom and Goshen occupations are more common, for the former again as in the San Luis Valley. It is possible and even likely that Alder/Angostura is more of a western Rockies manifestation, ranging into the Northwest Plateau, even though the original Angostura site type is in South Dakota. And it is also possible that Angostura is not the same as Alder and that we still need a lot to do to understand Angostura on the Plains and its relationship to similar complexes on the Western Slope. Another major characteristic of the Middle Park Paleoindian occupation is the rather low Hell Gap use of the area compared with southwest Wyoming. Even when we combine Agate Basin and Hell Gap with the Western Stemmed tradition points in Middle Park, the use intensity is far lower than in southwest Wyoming; however, the latter is comparable to the Southern Rockies as a whole, leaving Middle Park as an anomaly. The absence of Clovis groups in Middle Park is puzzling, especially given their low but constant use of all nearby areas. However, the small overall sample size of Clovis diagnostics in the Rocky Mountains in general is still subject to significant sampling bias, which may account for their absence in Middle Park.

In addition to use intensity, the Middle Park Paleoindian Projectile Point Database is informative of other characteristics of settlement strategies. For example, the raw material of projectile points is virtually exclusively local to Middle Park. Troublesome formation is the primary raw material utilized, followed by raw material from the Dakota formation Windsy Ridge quarry and Table Mountain or other Miocene formation volcanic cherts. Little material was brought into the park from outside, but the material that was, originated at the Trout Creek quarries (or a Mississippian- age formation such as the Hartvill uplift, but closer sources are available), the Green River formation, or from the Palmer petrified palmwood of central Colorado. Although all were brought in as finished implements, some were still large enough to be recycled, such as the manufacturing of a Folsom point from a Trout Creek ultra-thin biface. Although these few pieces could have been directly procured, they could also have been traded or moved through an exchange system.

Middle Park also shows a change in raw material use: a greater preference for quartzite in later periods, similar to the results from the Hell Gap site, the Lookingbill site, and the Southern Rockies survey. This pattern appears to be geographically expansive, perhaps indicating a nearly continent-wide change in projectile point function. In other words, there seems to be a shift in the cultural system in Late Paleoindian times that favors increased use of quartzite for projectile points. How exactly this fits into developments of the early Holocene cultural systems I do not know, but I think it suggests different rates of change or points of inflection in the evolution of specific cultural components, not necessarily the system as a whole. That is, a change in raw material preference may not have parallels or may be out of sync with other developments in the
cultural system, such as projectile point styles, settlement, and subsistence technologies.

Excavations were conducted at two bison kills, two camp sites, and one camp/quarry site. These provide a wealth of additional information about the subsistence resources and practices of the earliest occupants of Middle Park, as well as about their technological strategies and settlement systems. Located at just over 2200 m, the Upper Twin Mountain site is the highest and oldest bison kill in North America (a few older bison kills exist, but not at high altitudes). It was occupied at the beginning of the winter, and the zooarchaeological record provides evidence of intensive bison processing surpassing that of lower-elevation kills. Such resource intensification is predicted for populations adapting to high altitudes. The Jerry Craig site, also a bison kill but at slightly lower elevation, was occupied later in time, during the Cody period. Zooarchaeological evidence in the form of tooth eruption and wear suggests a late summer or early fall mortality of the animals, while the large number of projectile points informs us that a very different procurement strategy from that at Upper Twin Mountain was followed to capture the herd. Perhaps a corral constructed near a frequently used pass held the animals while they were dispatched with hunting implements, a great many of which were recovered. Although we presently do not have evidence of bone processing at the Jerry Craig site in the form of marks on bone, the three recovered choppers from the bone bed suggest that processing for within-bone nutrients (marrow) equaled or surpassed the processing intensity observed at the Upper Twin Mountain site. While two sites separated by more than a thousand years and of different seasons cannot answer all our questions about when and where Middle Park Paleoindians acquired their resources, it may be safe to say that mass, probably communal, bison hunting with intensive processing of carcasses was one feature of the subsistence strategy.

Excavations of two camp sites, Lower Twin Mountain and Locality B of Barger Gulch, yielded different-quality data on the Folsom occupation of Middle Park. Although Lower Twin Mountain did not have a buried Folsom component, the surface material provides ample information about Folsom residential site use. Later stages of projectile point production, including fluting, occurred at the site. In fact, far more Folsom points were manufactured at Lower Twin Mountain relative to ones discarded than at any other Middle Park site. The Lower Twin Mountain site also yielded a variety of tools, particularly scrapers and gravers, which point to domestic and craft activities. Locality B of Barger Gulch, still under investigation, is the largest excavation of a Paleoindian site in Middle Park. The Folsom component of this site was buried shortly after site use, although it may have been partially deflated on several subsequent occasions. Be that as it may, the Folsom floor is a high-integrity archaeological deposit with spatial structure indicating the location of various facilities, chipped stone tools, production, and crafts. Unlike Lower Twin Mountain, Locality B shows more projectile point production stages, early stages as well as later ones. Perhaps this should be expected for a camp workshop located some 300 m from a major source of raw material, but the estimated length of occupation—several months—also provides for more chances for different production stages to occur.

Among the most significant discoveries at Locality B is a structure, presumably a domicile. In fact, there are likely multiple structures, but currently only one has been intensively analyzed. These structures are among a growing body of very recent evidence showing Paleoindian means of protection from the elements (shelter), domestic activities, and organization of camp space. More importantly for the scenario developed in this book, the use of structures is critical as an adaptation to the cold, high-altitude environments of the Rocky Mountains. Along with the Folsom structures of the Gunnison Basin and the post-Paleoindian structures of other Middle Park sites, the occurrence of the earliest structures in these regions and their sheer quantity compared with other areas points to the importance of protection from the elements, perhaps as one means of calorie conservation.

The last excavated site in Middle Park is Locality A of Barger Gulch, although as at Lower Twin Mountain a buried component was not found at this site and all our information is from surface (or near surface) context. Nevertheless, the chronologically diagnostic artifacts indicate a long Paleoindian use of the site, includ-
ing that by Folsom, Goshen, Cody, and Western Stemmed groups. Burger Gulch Locality A is primarily a quarry; the raw material outcrops immediately below the ridge top, where occupation occurred. Raw material was brought to the ridge top and manufactured into a variety of objects, including tools and presumably cores, that were carried away to other locations. The ridge top served as a camp site, but because of the surface context of the assemblage, no temporal differentiation of the camps is possible. It is likely that Paleoindians camped, repaired tools (including replacement of point tips), and, at least for the Folsom groups, carried on several phases of projectile point production.

Paleoindian Biocultural Adaptations to the High-Altitude Rockies

In terms of the biocultural approach to high-altitude adaptations, what did hypoxia, cold, and related stressors mean for the first Middle Park peoples? In earlier chapters I showed that the requirement for extra calories, clothing, and protection (shelter) would be the most significant aspect of adaptation to Middle Park conditions. Since bison procurement is one window we opened into Paleoindian prehistory, what might this entail in terms of bison procurement behavior? To extract more calories from a mass bison kill would essentially mean to process the animals more intensively. However, we see that bison kills across the Plains vary a great deal in a number of characteristics including processing intensity (Hill 2007), depending on environmental as well as purely situational exigencies. Thus some kills are barely processed while others show relatively heavy processing, although they fall short of manufacture of bone grease.

Because of the high-altitude stressors, Middle Park mass kills would be expected to show processing intensity at or above that seen in their lowland (Plains) counterparts. The only processing we can evaluate at the Upper Twin Mountain site is the acquisition of with-in-bone nutrients, as the meat butchering is essentially nondetectable due to poor cortical bone preservation. Several of the contemporary low-altitude sites, such as Folsom and Mill Iron, show virtually no processing for within-bone nutrients (e.g., Melzer 2006; Kreutzer 1956), although some later sites are quite heavily processed (Todd et al. 1997; Hill 2005). The Hell Gap site Goshen component, however, shows intense bone processing, but Hell Gap is a residential camp and not a kill site, and would thus be expected to have more intense processing. Given the nature of the Upper Twin Mountain assemblage, the only feasible way to measure processing intensity is to compare the number of impacts, green bone breaks, and cut marks to the number of specimens. Because of the small size of the Upper Twin Mountain assemblage and the very small number of specimens, no statistical procedure was conducted for a quantitative evaluation of the data; however, the raw numbers suggest that Upper Twin Mountain is quite heavily processed, perhaps more than early lowland sites of the same age and even more than some very heavily processed sites such as the Shoshone Buttes Holding winter camp (e.g., Todd et al. 1997).

Support for heavy processing and thus emphasis on energy extraction can also be found in the frequency of green bone breaks. Although an ambiguous measure, because green bone breaks can be natural (or carnivore caused), it is likely that the green bone breaks at Upper Twin Mountain are the product of processing for within-bone nutrients and these occur on about 89 percent of the identifiable long bone elements. The crania at Upper Twin Mountain also seem to have undergone heavy processing, including perhaps burning. In fact, the maximum number of animals for the site is calculated on the basis of mandibles; the upper dentition is totally absent. Cranial parts are, however, present in the form of petrous bones as well as a rather high number of burned and unburned cranial vault fragments, and their distribution suggests processing with the use of fire. As discussed earlier, brains are rich sources of essential fats, and although the role of fats in high-altitude diets is a source of some debate, it appears that at least some fats are critical for healthy human growth and development. It may be that brains were sought after and some skulls were removed from the immediate kill area and with some exceptions processed elsewhere, that is, outside our excavation or even outside the site area that preserved. Hence it seems that at Upper Twin Mountain the prediction of intensive processing as a response to high-altitude conditions is supported by several lines of evidence, and if the choppers
at the Jerry Craig site are an indication of bone marrow extraction, that site also suggests intensive processing during a different season.

Cold stress and thus exacerbation of the effects of hypoxia in Middle Park also lead us to expect more focus on clothing and in particular sewn clothing. Paleoindian peoples are known to have used sewn clothing, as eyed needles have been found in a number of sites across the continent (Irwin-Williams et al. 1973; Frison 1982a; Sellet 2004). Recently, however, it has become clear that Paleolithic structures more often than not must be defined through analysis rather than field observation (Surovell and Waguespack 2007; Stiger 2006; Stapert 1989; Sellet 2004), and such analyses are just starting to become common practice for Paleoindian prehistorians.

Nevertheless, there are several lines of evidence suggesting that the earliest peoples of Middle Park, as well as their successors, constructed substantial winter dwellings. Barger Gulch Locality B, the only site known to be preserved and one that has received substantial excavation, yielded at least one and probably two domestic structures (e.g., Surovell and Waguespack 2007). Perhaps it is no coincidence that Middle Park, with its Barger Gulch Folsom structures, and Gunnison Basin, with comparable-age structures, have produced a large fraction of the early Paleoindian age domiciles in the region, yet only a few sites in these areas have been investigated. In fact, 100 percent of the excavated Folsom camps in the two areas and with preserved deposits have yielded structures. In other words, the proportion of structures to sites in this region is far greater than in the rest of North America, where from hundreds of excavated early Paleoindian sites only a few structures have been defined. The overall number may be even greater; Mark Stiger (personal communication 2012) continues to identify new Folsom-age structures in the Gunnison Basin, where as many as 20 may exist. If this is the case, the vast majority of early Paleoindian-age houses may be located in the high, cold, and hypoxia-stressed environments of the Southern Rocky Mountains. Added to this are more than 20 later-period structures identified in Middle Park (Wheeler and Lennon 1988; Metcalf and Black 1991), which also account for a large percentage of human occupation given the relatively low numbers of intensively investigated sites compared with nearby regions, it seems that shelter and low residential mobility have been features of Middle Park adaptations since the region was first occupied.

The importance of heat and thus calorie conservation may also be evidenced by the use of daub on most high-altitude structures. The Gunnison
Earliest Americans of the High Country

Folsom houses, the Gunnison Archaic structures, the Middle Park Archaic structures, and others all have associated daub or are substantial dwellings. The Yarmomy houses just outside Middle Park are some of the most substantially built pithouses in both the Southern and Central Rocky Mountains (Metcalf and Black 1991). Although we do not know the character of the superstructure on these facilities, their heat retention is quite certain to be substantial, and the superstructures apparently included daub sealing. The Early Archaic structures in the upper Gunnison Basin are described as entailing an "adobe pile and radiating burned poles" (Mueller and Stiger 1983:84) and "a pile of adobe chunks with log impressions" (Mueller and Stiger 1983:84). Although the authors suggest that the adobe served as anchoring for the superstructure poles, I would argue that sealing and cold protection are likely functions for the daubing as well. It can also be suggested that the seal- ing of walls was the function of the daub at the Hill Horn and Grunby Early Archaic structures in Middle Park (Wheeler and Martin 1982). In both cases, nearly all if not all the structures were identified by the presence of daub. And finally, several of the Mountaineer Folsom structures currently known are associated with daub (Stiger 2006; Andrews 2010). While daub has not yet been identified at the Middle Park Folsom structures, the nature of deposition, postdepositional erosion, resementation, and extreme weathering could have destroyed any evidence of this material, as it seems to have done with bone. On the other hand, the Barger Gulch superstructure could have been well sealed with skins and other material, precluding the need for daub.

Given the importance of heat for infants with their undeveloped core temperature stability (R. Brooke Thomas, personal communication 2010; Hanna 1976), it is likely that these permanent, well-sealed structures enhanced infant survival in the cold, high-altitude, hypoxic setting of the Rocky Mountains. Whether or not this more intensive house construction is related to cold protection, it provides us with an excellent reason to investigate the problem further. Evidence may or may not be on hand, but the nature and distribution of the daub, as well as the grass, stick, and pole impression patterns in this material, may provide further clues about its function in construction. Likewise, what is the internal spatial distribution and use of space within the structures? Is there evidence of infants in the vicinity of heating facilities, as with modern Peruvians? What might such evidence look like? On the other hand, is the daub related to sealing in the heat at all? After all, are not jacal structures the hallmark of the warm Southwest, Mexico, and other southerly regions? Yes, but daub may not serve the same function in all times and places. Just what is the social, cultural, and political context of daub construction elsewhere? These are all questions worthy of further exploration with regard to the adaptive strategies of the first peoples of Middle Park.

Another piece of evidence for a montane adaptation strategy of early Middle Park peoples may come from Folsom assemblage characteristics. Middle Park Folsom assemblages were shown to be extreme in terms of residential mobility (Kornfeld 2002; Chapter 4). Extreme residential mobility, however, does not tell us whether the mobility is high or low, only that the settlement strategy is characterized by residential rather than logistical mobility. The Barger Gulch Locality B structure and its implication of long, cold-season occupation, supported by a chipped stone raw material use strategy (Surovell 2009), suggests that residential camps may have been semi-permanent. Such semi-sedentary camps appear to continue throughout prehistory, as shown by the Hill-Horn, Grunby, and Yarmomy House sites in Middle Park and the Mountaineer as well as later Archaic sites in the Gunnison Basin (e.g., Stiger 2002, 2006). High-altitude or montane adaptations, then, appeared early in Rocky Mountain prehistory and continued to characterize forager lifeways there through time.

Middle Park in Paleoindian Context

Through the vagaries of research history the perception of the earliest Americans as big-game hunters has been entrenched in the professional literature and the public mind (e.g., Kornfeld 2007; Speff et al. 2013). To sustain this perspective and elaborate on the characteristics of Paleoindian economic strategies, Paleoindian scholars had to make at least the following assumptions: (1) Paleoindians were highly mobile and used extremely large territories; (2) Paleoindians
procured raw material for chipped stone tools, in particular for their arrowheads, through a strategy embedded in annual rounds of entire social groups; and (3) Paleoindians needed the highest quality of chert for their hunting tools to ensure the successful procurement of large game (Speth et al. 2013; Bamforth 2007a and b). Speth and colleagues (2013) show that none of these assumptions is warranted, or would at least require significant justification as the basis of what would be a unique economic system among known foraging societies. Accepting this critique cuts the heart out of the homogeneous, cherished, and most popularized view of Paleoindians.

The critique launched by Speth and colleagues (2013) is not new or unique; rather, it has been built upon more than 30 years of debates about Paleoindians as foraging specialists or generalists. That is, was their primary subsistence resource bison or was their diet diversified (e.g., Kornfeld 1988; Melzer 1983; Melzer and Smith 1986)? Earlier generations of prehistorians essentially argued for continent-wide specialists (e.g., Hibben 1961; Caldwell 1958; Sellards 1952; see also Dixon 1999:223). The recent critiques have been buttressed by intensive regional studies of Paleoindian cultural systems across the continent that show a great deal of variation in subsistence as well as cultural patterning in general (e.g., Amick 1994, 1995; Bamforth, ed. 2007; Hofman and Hurst 2010; Lepper 2002; Collins and Bousman 1999). Nearly all if not all other debates regarding Paleoindian prehistory have their origin in the specialist versus generalist arguments and show early development of regionalization. Many if not most Paleoindian studies of the past 30 years did not specifically or intentionally contradict the big-game hunting perspective, but their cumulative effect presents a diverse array of Paleoindian adaptations.

Especially notable among these studies are the efforts to record Paleoindian sites across broad regions, at the level of the state or even across state lines (e.g., Anderson et al. 2010). Because of the generally high chronological diagnostic value of Paleoindian projectile points (and some associated production debris), researchers have been able to gain valuable insight into Paleoindian lifeways and their local and regional variability (e.g., Amick 1994, 1996, 1999; Blackman 2003; Labelle 2005, 2013; Morrow and Morrow 1999a; Pithlado 1999, 2003; Hofman 1992, 1999, 2003; Ingbar and Hofman 1999). Without these studies and the enormous efforts undertaken by the investigators at unprecedented geographic scales, such spatial variability would simply remain unknown. Telephone booms, or rather the excavation of sites, can never provide the type of information that we can glean from the large spaces required to understand a variety of hunting and gathering processes. Be that as it may, the past 30 years of Paleoindian studies have amassed a vast quantity of data that can now be brought to bear on the specialist/generalist and other debates. The regional character of the Middle Park Paleoindian Project places it in this investigative category.

Paleoindians: Mobile, High-Tech versus Sedentary, Low-Tech Foragers

Based on this vast background, and in an effort similar to that of Speth and colleagues (2013) to characterize the state of Paleoindian studies, Hill (2010:75) has recently dichotomized views of Paleoindian lifeways as traditional versus "opposing." In the traditional view, Paleoindians are big-game hunters (specialists) dependent on sophisticated technology and characterized by high residential mobility. These groups targeted mammoth or bison exclusively, regardless of environmental setting or season. Hill develops the following archaeological correlates based on this view of Paleoindian economic strategy: (1) sites should have low occupation intensity; (2) since most sites are kill sites, there should be general assemblage redundancy (presumably this refers to communal kills); (3) some exotic raw material should be present; and (4) there should be evidence of highly curated tool production and maintenance strategies (e.g., bifaces, extensive reworking of tools).

The "opposing" view is less homogeneous but characterizes Paleoindians as (1) occupying and reoccupying areas of high ecological diversity and being more sedentary in these locations or practicing a place-focused strategy (e.g., the "special places" of Bamforth 2007b); (2) using local raw materials almost exclusively; (3) responding to seasonal variation in resource structure with annual settlement rounds; and (4) having regional differences in adaptive strategies or even ethnic
groupings (see Bamforth 2007a and b for a similar perspective). According to Hill, the "opposing" view essentially amounts to replacing one normative perspective with another, and thus missing the enormous variability of overall Paleoindian behavior and its products and precedents.

A more realistic and constructive approach, claims Hill (2010), would be to view Paleoindians as responding to regional conditions and their short- and long-term temporalities in resource structure (e.g., Bamforth 2007b). Hill shows variation in settlement and subsistence strategies across broad regions of the Plains and Rocky Mountains, claiming that "foragers' behavior was a response to the local environmental conditions" (Hill 2007:85). In effect, he is throwing in his hat with the by now well-established regional Paleoindian adaptation (e.g., Amick 1991; LaBelle 2005; Walker and Driskell 2007), while throwing a bone to the traditional big-game stalkers (if there are any left) that such strategies may have existed under certain past conditions.

From this perspective, Paleoindians, including Clovis groups, can no longer be described as continental or subcontinental entities, but are viewed as early Americans adapted to a myriad of local and regional conditions. If this is the case, and it appears to be, we can legitimately ask, what do the Clovis, Folsom, and other superregional artifacts diagnostic of this early time period represent? In other words, if cultural adaptations are regional, what is the nature of the superregional objects? This is not a question I am prepared to answer here, but it is one begged by the new perspective on Paleoindian cultural systematics.

Speth and colleagues (2013), Hills (2010), and Bamforth (e.g., 2002, 2007b) critiques and perspectives on Paleoindian cultural dynamics provide a backdrop for our investigation of Middle Park Paleoindians. Compared with other Paleoindian adaptations examined with continental or subcontinental scales and perspectives, Middle Park is unique. As has been argued throughout this book, the high-altitude setting of Middle Park Paleoindians sets them apart from their contemporaries everywhere else except for perhaps those in other Rocky Mountain basins or the South American Andes (e.g., Lynch 1980; Rick 1980; MacNeish 1971). Although Middle Park Paleoindians are presently known from a limited database, the data can nevertheless contribute to the contemporary debates concerning Paleoindian systematics.

To begin, the present study covered the entire Paleoindian period from Clovis to Frederick, not including the two extremes, which appear to be absent from the Middle Park record. However, just as we are learning that we cannot characterize all Clovis, Folsom, or Paleoindian behavior as homogeneous across all or part of the continent (e.g., LaBelle 2010; Hill 2010; Amick 1994) but must take into account regional variation, it is quite certain that we cannot homogeneously characterize Middle Park Paleoindians (or those of any other region) over a 4000-year time frame but must consider temporal variation. An instance of this is the increased use of quartzite through time in Middle Park, where later groups used significantly more of this raw material than earlier ones (Chapter 5). However, this pattern complicates the overall picture of Paleoindian change and continuity. While on the one hand Middle Park is a good case of spatial or regional diversification in Paleoindian behavior, on the other hand the quartzite pattern falls squarely into broad interregional and perhaps even continental patterns of similar processes. Why do we see such patterns when our current conceptual tools are telling us that we should expect discontinuity? For the time being, this question is also left unanswered; reaching the answer will require significant future research at regional and continental scales. Below I address selected aspects of Middle Park Paleoindian cultural processes in the light of the results from other studies.

Raw Material and Information

Middle Park Paleoindians show a narrow, regional use of raw materials. Perhaps this use is not as narrow as in the Gunnison Basin, where Folsom assemblages show no out-of-basin raw material, but the frequency is so low in the Middle Park surface sample that for all practical purposes the two basins are equivalent (e.g., Andrews 2010). If we take the entire Middle Park Paleoindian sample into consideration as well as the excavated assemblages, all reasonably securely sourced out-of-basin material originates from (1) northeastern Colorado (Flat Top, one Folsom point), (2) South Park (Trout Creek quarries), (3) north and west
of Middle Park in the southern Wyoming Basin, and (4) the Palmer Divide east of the Front Range. The distances to these sources range from 240 km for the first to 140 km for the last, with the other two sources being approximately 160 km distant. It should be noted that all the nonbasin material could be carried effortlessly by one person, even a child. Although no exact weight is available for the out-of-basin material, the total weighs at most several hundred grams.

In this book I have argued for a permanent Middle Park Paleoindian population, and the seasonality estimates available from two sites (Jerry Craig and Upper Twin Mountain; see Chapter 4) currently provide the best evidence for such permanency anywhere in the Rockies (e.g., Andrews 2010:297), both Piiblado (2001) and Andrews (2010) address several models of Paleoindian use of the Rockies, the former for the mid to late Paleoindian period, and the latter for early (Folsom) occupation only. The basic question is whether Paleoindians were permanent, temporary, or transient users of the Rocky Mountains and whether they were linked more to the Great Basin or the Great Plains populations (see Piiblado for the latter). Whereas Piiblado seems to see some of each, depending on the complex or time period, Andrews seems to favor permanency for Folsom, although he still hedges his bets. Neither of these models, however, bears directly on raw material procurement of very small portions of the tool kit. In other words, permanent mountain residents, like temporary or transient residents, could have directly procured out-of-basin resources on special trips. So the models do not enhance our thinking about whether the out-of-basin material is directly procured or acquired through trade in its various guises (e.g., Malinowski 1920; Mauss 1954). In whatever manner the material was acquired by the Middle Park residents, there is a more fundamental and interesting aspect to the acquisition: information (e.g., Whallon et al. 2011).

In the words of Martin Wobst (2011:267) “information returns to forager studies.” Although some may argue that it never left, it would be disingenuous to say that it has been prominent in the past 20 or so years. Information is important to all societies, but the structure of information differs dramatically. In fact, it would have been interesting if Lewis Henry Morgan had used information rather than subsistence to classify cultural evolution. What would the outcome have been? Whallon and colleagues’ (2011) volume on information is instructive about the wide variety of roles information plays in different forager contexts as well as the application of theories of information to prehistoric case studies. For the purpose of Middle Park Paleoindians and the nonbasin resources, the presence of the out-of-basin material has some bearing on information networks (e.g., Veth et al. 2011; Fitzhugh et al. 2011). Regardless of how the material was acquired, information accompanied its movement and introduction into Middle Park. If our samples were larger, we could construct an information index based on the ratio of the number of specimens (or weight) to distance. Presently, our samples are too small to allow a quantitative approach to the problem. However, it is safe to make several observations that bear on the information networks of Middle Park Paleoindians. First, Middle Park Paleoindian information networks ranged up to at least 240 km. Second, information appears to link Middle Park to peoples in all directions, except to the north into North Park. Third, information access ranged from the most difficult terrain to the east and south (the Continental Divide) to the less rugged crossings out of the park to the west/northwest. Fourth (presented with caution, given the inadequate sample), judging by the quantity of material, there seem to be stronger links to the east and south over the most difficult terrain than to the north and west, where access is significantly easier.

The lack of information from North Park is puzzling, and I offer several potential explanations. First, it is possible that the inference from our raw material analysis erred and that some of the specimens assigned to a local Middle Park geologic formation might be from North Park. However, because these same sources are available in both parks, we cannot securely assign them to an out-of-basin origin. Second, Middle and North Park groups may have been so closely linked, or conversely so antagonistic, that either no information was flowing (in the second instance) or the information flow was mediated
Earliest Americans of the High Country

or mediation was not even necessary (in the first instance). In that regard, it would be significant to know whether Middle Park sources are found in North Park. In general, Middle Park offers far richer and better-quality raw material than North Park. If Middle Park sources occur in the Paleoindian assemblages of North Park (and some do; see Lischka et al. 1983), but not the reverse, is it possible that the information-accompanying media to the north were raw stone materials, while the media in reverse were perhaps perishable materials common to North Park?

Another way to look at the patterns of information networks is the far greater amounts of information, if the amount of material can be translated to amount of information, arriving over the most difficult routes versus that arriving from the easier ones. This may suggest that the harder-acquired information is more likely to be materially supported than the easier-acquired information. Simply put, it is more likely that Middle Park people traveled to the Wyoming Basin than to the eastern slope on a regular basis. Consequently, information would be fresh and constantly flowing from the west and not necessarily propped up by materiality. Conversely, the materiality of the eastern flow of information would have kept the information in the system longer. This, of course, has a variety of implications for the types, quality, and uses of information (Fitzhugh et al. 2011). If this interpretation is correct, and it is very preliminary and may in fact not be correct, then it was clearly important to have some information from east of the Continental Divide, but that information was likely not of good quality or was a type of information with a long use life (the longer the information is not renewed, the poorer the quality; Fitzhugh et al. 2011). On the other hand, the western source of information was contemporary. This may indicate different types of linkages of Middle Park peoples to outsiders. For example, the western groups may have been close kin with many marriage alliances that were often relied on in emergency situations, while the eastern groups may have been more distantly related peoples with fewer kinship ties. Whether this very preliminary scenario of information networks sticks or not, raw material and especially Paleoindian projectile points e xuad ar- chaeological information about prehistoric information networks, and without considering this approach we will miss much of Paleoindian cultural systems.

Annual Round, Special Places, and More Information

Did Middle Park Paleoindians have annual rounds and did they have special places? These are two critical characteristics that would set them apart from the traditional view of the earliest Americans (e.g., Hill 2010). It is extremely likely that in Middle Park they had seasonal rounds, as is suggested for some other regions (e.g., Andrews 2010; Labelle 2010), and it is most certain that they had special places. As I indicated above, homogenizing 4000 years of prehistory is risky, but given the general paucity of Paleoindian evidence in Middle Park despite our intensive project (about 100 out of some 3300 total sites in Middle Park is still a small sample; Reed et al. 2008), this is the only means of approaching this question.

We know that the highest reaches of the park, the Continental Divide and the adjacent cirque basins, were occupied at least by Late Paleoindian times. The Caribou Lake and Vail Pass sites attest to this occupation. We also know of earlier evidence for occupation of the high country, despite the still sketchy details (Brunswig 2007). Although it is not impossible that the high country was used in the winter, as the native North Americans were quite capable of making snowshoes or comparable tools for traversing snow, it is unlikely that Paleoindians did so regularly. The Continental Divide camps and the associated game drive systems were likely intended for the warm season, that is, were seasonal occupation loci. Seasonal transhumance is, of course, a well-known strategy of foragers and pastoralists, a means of utilizing resources offered by ecological patchiness, seasonality, and temporality. For Middle Park Paleoindians, ease of access to the high country and its warm-season resource bonoms would have been attractive. A reverse of the seasonal boom in the high country occurs in the basins in the winter, when animal forage contracts from the entire park catchment to the lowland open park areas, where animals congregate (Surovell et al. 2003; for the same situation in North Park, see Lischka.
et al. 1983:33–53, 220). These areas would have been attractive camping locations in the winter.

Evidence of such use by Middle Park Paleoindians is buttressed by Middle Park raw material recovered from early high-country sites (e.g., Pitblado 2000). It is extremely unlikely that we will ever muster archaeological evidence that annual rounds were a feature of Paleoindian settlement strategies for 4000 years. Conversely, it is likely that such strategies were always employed in montane environments and indeed continue to this very day. For example, livestock is driven to the high country annually to forage on seasonally available grasses, and the low-elevation forage is reserved for the winter. On the other hand, is the seasonal tourist onslaught of the high country any different from its prehistoric counterpart? Tourists flock to the mountains and the Continental Divide during the warm season, not to harvest the resource in the materialist meaning of that term (i.e., for calories) but for recreation. Is recreation not another means of harvesting a high-country resource, albeit a different resource? And while warm-season occupation may link the structure of past and present annual rounds, a different resource, snow, is harvested by today’s winter users of the high country. Annual rounds are thus a feature of montane adaptations, and their specifics, such as season of use and time spent in the different zones, are variable and for Paleoindians worthy of further investigation.

With respect to special places (as per Bamforth 2007b:350), several lines of evidence provide clues as to their characteristics. First, Burger Gulch is clearly a special place, evidenced by the representation of many Paleoindian complexes and by permanent or semi-permanent occupations such as the Burger Gulch Locality B structures. I do not think it is a coincidence that the only currently known domestic structure (at Locality B) is essentially coterminal (approximately 500 m) to where we have evidence for a continuity of Paleoindian occupation of the park (Locality A with its multiple Paleoindian components). Certainly the availability of raw material enhances the locality’s special value, but that is likely only one of several characteristics that drew Paleoindians (and later occupants) to the locale. Hay Gulch also appears to be a special place, but perhaps with a different focus. Like Burger, Hay Gulch consists of multiple localities spaced out in an almost continuous fashion over several kilometers of the drainage. In fact, the archaeological manifestation is continuous in both locales, only waxing and waning in clustering through space. Chronologically diagnostic artifacts are not clearly continuous, and at least at Barger their abundance seems to be a function of the overall artifact quantities. Hence Barger’s Area A, with the largest assemblage, has many more chronological diagnostics (from the surface only) than other site areas. Assemblage size may also be positively correlated with the number of diagnostic artifacts at Hay Gulch, but the hugely disproportional total assemblages mute this observation (while millions of specimens constitute the assemblage at Barger A, only hundreds or thousands at most are at Hay Gulch; the large numbers at the former site are due to procurement activities).

The point, however, is that both Barger and Hay Gulches represent landscapes that were reoccupied over and over for the duration of the Paleoindian period, similar to the Allen, Hell Gap, and Nall sites (Bamforth, ed. 2007; Larson et al. 2009; LaBelle 2010). Although not as yet quantified, the Barger occupations appear closer to the main drainage stem than at Hay Gulch. It is almost certain that this distribution is driven by the raw material outcrops at Burger Gulch and that Hay Gulch is a different type of special place. The latter, as discussed in Chapter 4, appears to be a camp and hunting locale, while the former is a camp/procurement/workshop location. We should expect the requirements of hunting strategies to determine specific site location at Hay Gulch, and keeping some distance from the game corridor close to the main stem and the water sources may be one such necessity.

Reoccupation of Paleoindian sites has recently been measured in a number of ways, and the results have shown dichotomous or more complicated patterns. LaBelle (2010) has demonstrated that Paleoindian settlement strategy is dominated by sites with small to medium-sized assemblages, measured by the number of projectile points. He has made an argument that small to medium-sized sites represent short-term, specialized function locations, while the large sites are either bison kills or camps, sometimes reoccupied
many times. LaBelle further measured reoccupation on the basis of multiple Paleoindian components and found that while most sites again show a single component, there is a great deal of interregional variability. Some regions are characterized by more than 75 percent single-component sites, while in other regions only 37 percent of the sites are single-component. To him this demonstrates significant regional variation in settlement strategies, differences that can be explained in terms of the temporal and spatial character of the resources.

Along with several colleagues (Andrews et al. 2008), LaBelle had earlier demonstrated similar differences with Folsom sites. In that multidimensional study, the authors found variation from small single-activity sites to small multi-activity sites to large multi-activity locales. The last-mentioned usually represented reoccupation or residential "hubs" (Andrews et al. 2008:484). And in a nearly contemporary study of a later Paleoindian occupation, Bamforth (2007b:247) dichotomizes Paleoindian sites into traditional bison kills and others. The other sites include "camps with no evidence of communal procurement...small kill sites, and other special purpose locations." These other sites are, of course, far more numerous and far less known (see also Kornfeld 2007; Kornfeld and Larson 2008).

Some of Bamforth's other sites, Andrews and colleagues' hubs, and LaBelle's reoccupied large sites are special places within the Paleoindian settlement landscape. As has been shown, these types of locations vary between regions and temporally over the Paleoindian period. Such variation is likely at least partially a function of changing climate, vegetation, and distribution and character of subsistence resources. The special sites, along with the regional and temporal variation—now well documented for the entire Paleoindian period, as well as for some specific cultures (e.g., Folsom, Late Paleoindian)—leave little doubt that early Americans were not in any way drastically different types of hunter-gatherers than we would expect.

There is, however, another perspective we can bring to the hubs or special places. In a recent volume on the role of information in foraging societies, Hitchcock and Ebert's (2011) examination of the Kua and Tiya San of the Kalahari is instructive in terms of special places. One such location of the Kalahari foragers is the Lebong Pan, a place used for "residential occupation, gathering camp, ambush hunting location, curing ceremonies. rainmaking, beer parties, dances, agriculture, cattle posts, initiation rites, menstrual seclusion, stone material exploitation, and sharing and exchange of information, goods and services" (Hitchcock and Ebert 2011:162). They emphasize the complexity of these locations given the overlapping reoccupations, the natural formation processes, the long temporal uses of the locations, and so on. The authors remark on how the use of such places is intricately linked to previous uses of the places, immediately prior activities, and knowledge and information about such places obtained from "ancestors, their kin, their friends, and from other people, including...government officials" (Hitchcock and Ebert 2011:165).

Paleoindian hubs may be similar special places with complicated occupation histories and site formations that were critical points of information flow as well as social, political, and subsistence activities. Or in LaBelle's (2011:149) words, "places like Lindenmeier (and Mountainair, Barger, others) could have served as lighthouses, places to facilitate interaction and communication." It is likely not a coincidence that Barger Gulch is the location of the greatest amount of out-of-basin raw material. Some will argue that the presence of this material is simply a function of retooling at a procurement location. However, as has been argued in several previous sections of this book, Barger Gulch is much more than a simple procurement location; rather, it is likely a hub, more a network or cluster of such activities. This is not simply an exercise in removing layers from the archaeological record; it is based on selected facts as presented in the previous chapters of this book and is meant to provide a more personalized view of the lives of prehistoric peoples in Middle Park. What was life like in those ancient times? We may never know
exactly, but the data and much modern ethnographic evidence can be used to create a credible story. This type of less formal presentation can also serve as a way to create scenarios of past life and to conjure up hypotheses that can be tested in future research.

Saviot of the Williams Fork Band woke up on a cold morning cuddled in a warm buffalo skin. She well recalled the hunt that netted the skin, the hard work that followed skinning the carcasses, the festivities and joys that accompanied acquiring so many animals, the visiting with friends and cousins she hadn’t seen for so long, and the former beaus and lovers who now lived with their closer kinfolk. This was a particularly big gathering underneath the sacred Mountain of the Wolf. Everyone attended who could. Some came from the side of the rising sun through the Deep Gorge, others from the Land of the Rabbit Ears, yet others from the Land of the Winter Sun with its deep lush forests. Before the hunt many had visited the mountain and made offerings to the spirits for success and long life, and others had fasted and stayed in the little enclosures several nights in hopes of stimulating their senses to accept nature’s wisdom.

The day before the buffalo came, they had spent the morning fixing the fences between the trees, blocking off the buffalo trail on the low pass between the Little Mountain of the Wolf and the ridge heading from it toward the Land of the Rising Sun. This was a particularly good place to hunt buffalo. Because of the regular trail, little effort had to be put into moving the buffalo into place, unless, of course, they sensed a change in the expected landscape from the fixing of the corral fence. But that was unlikely—it was downright and hidden by intervening trees and bushes. Nevertheless, to ensure success, people were stationed along the route to turn the buffalo toward the corral if necessary. However hard that work was, now it was paying off in the warmth and comfort of her sleeping area.

Saviot lay on top of a sagebrush and juniper mat covering a bed of grass and pine needles. The latter were carefully placed horizontally, layer by layer, to keep the sharp pine needles from poking through the matting. If the mattress was done well and with fresh green needles, the bed would be comfortable and soft. Her children were good at collecting the necessary components as well as making the mattress; she was comfortable, satisfied, and proud of her children and their accomplishments. Later she would teach them how to make many more objects from grass stems and pine needles, but for now they could help immensely when it was time to set up a new camp.

The mat covering the bedding was for her to manufacture, but Wakara, her partner, had peeled the sagebrush and juniper, processed the bark, and cut it into strips just the right length. Making mats was not quite as hard as scraping and tanning buffalo hides, but it was still an intricate and time-consuming process. Her mother had shown her how to do it, and she had learned well and quickly. She was good and sometimes even gave her mats away to cousins. In turn, her cousins, Little Eagle and Soft Bear, gave her the products of their expertise. Little Eagle was a good hunter, and she often got the best deer cuts from his catch, while Soft Bear made excellent pine needle baskets. Saviot could never quite achieve the tight weave necessary to hold enough pine pitch to seal the baskets for carrying water.

Saviot was still in bed, but Wakara had left early for the Valley of the Big Water. It was time to plan for the next winter and decide if another large gathering was necessary. Putting up large stores of meat was good, but it wasn’t necessary every year. If skins were needed and lots of people were required for the skinning, scraping, and tanning, then they would have to have a gathering. But skins last a long time, almost a generation, so the right time for gatherings was when everyone needed them. Otherwise most people supplemented their skins annually with individual hunts for small amounts. They had already supplemented their bedding, tents, and clothing with several deer, sheep, and buffalo skins, but other groups might have had different luck and different
needs. Hence someone would have to gather such information from all the people in preparation for winter or a big gathering. If a big gathering was necessary for locating partners but not for skins, perhaps they could meet at the yampa grounds, or when there were other rich food areas to feed all the people who would have gathered.

So that morning Wakara began consulting with adjacent groups. Eventually, all the people in the Land Surrounded by Mountains would be contacted, even some from the Land of Hot Summers, toward the rising sun from the sheep and elk hunting grounds. Although they rarely participated in the buffalo gatherings, they were close kin and often all come together in the summer in the perpetual snowfields of the Shining Mountains, near the game traps. Wakara would provide a wide variety of information about the rains and droughts, snowfall, and plants and animals to the groups that visited and would bring such information back to the home group.

Wakara returned after five moons and five suns had passed. He hadn’t needed to go over the Shining Mountains and the game drives to the Land of the Hot Summers. After visiting Saviot’s brother at the Big Water, half a day’s walk toward the Land of the Rising Sun from the Deep Gorge, he had found that the people had already been in contact with the People of the Hot Summers. Blackhawk, Saviot’s brother’s partner, had visited her relatives over the Shining Mountains. The snow had melted early this year, and Blackhawk had wanted to take their young child to her parents and share their joy at seeing their young grandson for the first time. He had been born after the leaves had fallen, and travel with a young child would have been foolish and potentially dangerous earlier. Even though Blackhawk always kept a good pair of snowshoes around, and winter sheepskin parkas would have kept her and the baby warm in the worst of blizzards, there was no need to take chances. And here in the mountains the newborns were so small, hardly the size of a big jackrabbit. They usually survived but required a bit of extra warmth and more milk, so it was good that she had not ventured herself traveling over the Shining Mountains. But now Blackhawk had returned with welcome news from the Land of the Hot Summers. Winter had been good there, deer were fat and plentiful, and as far as she could see, bison, yampa, and other plants would be ripe soon at the game traps. She and her parents, as well as others from her home band, would meet up there.

From the Land of the Hot Summers, Blackhawk brought a yellow-light brown chert with pretty, very thin, wavy lines. She had found it lying around at her parents’ camp. Someone had brought it from two or three suns’ walk from the little pine-covered hills that snake out through the Land of the Buffalo and Antelope from the Shining Mountains. This material and some others were plentiful in that area. As she was sharing her journey over the campfire that evening with everyone at camp, Blackhawk handed the stone to Wakara. It would serve as a reminder to him of her journey and the need of the People of the Hot Summers in the rest of his travels to groups while consulting on the winter plans and the big gathering. Besides, he was the best stone tool maker in the entire Land Surrounded by Mountains.

But now Wakara was back. It seemed that a big gathering was not necessary. Most people had good skins of various sorts, most of the children were too young to look for partners, and those who were older could travel themselves to nearby camps and assess their mating possibilities. So decisions would be made at each camp about winter storage, a place to camp, and whether to partner with some nearby people. Camps and villages were so much more pleasant if a few groups camped together, and resources were usually no problem to sustain more than one group.

So with skins still available and in good shape, the people needed only to gather up some good-sized saplings or young trees to use for the superstructure. Felling trees was hard work, but young saplings, scarcely a fistful in diameter, could be done quickly with the right tool. Scraping and smoothing the poles to prevent puncture of the skins took more effort, but in the long run it paid off. Things for
lashing were still available, and if more were needed, they would be the by-product of a few buffalo or deer that would be procured between now and when a comfortable structure was needed. And besides, if skins were in short supply, the people could always cut down more saplings and make tighter-weaved walls and cover them with mud. Or they could mix and match, making a mud wall in the back and using skins in front. As long as the seals were good, the protection would be the same.

Their little camp was active that evening. Saviot and the children had trapped some fish in the river, and a few were drying on a wooden rack at the edge of camp. Two were roasting on griddle stones next to one of the hearths. Some yampa and carrot tubers were drying next to the summer lean-to, as was a basket full of serviceberries Saviot had collected. The breeze was slight but adequate to keep the mosquitoes down, so it was pleasant sitting by the little fire. They took turns throwing in some sagebrush, and the children kept on collecting it. They had been at this spot for some time so the dead sagebrush had thinned out immediately around camp, but there was still plenty of live sagebrush, a little harder to pull out but still good to burn. Saviot turned the fish over to roast the other side and sat back down. Soon it would be ready to eat.

The children were happy because Wakara had returned and they were eager to hear stories of their cousins and friends from the nearby camps, and they kept on nagging at him to begin. He took out the little yellow-brown chert nodule with fine, hairline-thin wavy lines and reminisced to himself about the state of People of the Hot Summers. Wakara looked at the nodule and began thinking of the tools he could make with it and the ones he might need in the near future. He picked up a nearby hammerstone and took off several small flakes, then a bigger one. Although he had worked this material before, each nodule had its own character. This one was especially fine. The bigger flake was scarcely wider than his thumb, a bit longer than his last digit, and uniformly thin. He had thought of making a scraper when he struck off the flake, but the result was better than expected. He needed a new scraper and in particular one with pointed piercing sides, and the thinness of this flake made it particularly appropriate for such a multiple-use tool. Wakara put away his hammerstone and went in the lean-to for his flintknapping kit. In the rafters of the lean-to they stored various raw materials and their tools. Both of their digging sticks lay against the wall on the ground. A couple of skin bags hung by leather thongs, along with a new breechcloth Saviot was making. There was also a bow, some arrows, and an allatly safety tucked away. Wakara located his kit in a little leather satchel pulled together at the top and tied with a thong that was then tied to the rafters.

He returned to the fire with a small end of an elk tine about the length of his hand between his thumb and little fingers when stretched out, with just the right curve and a well-curated tip. Sitting back by the fire, Wakara picked up the larger flake and began pushing off little flakes from one end with his elk tine flaker. In just a few minutes the scraper was finished and regularized, with a broad convex edge and a sharp bit, just right for working fresh skins. But he also wanted one with a piercing side. This would take a bit longer to make and required a finer tool. Perhaps he would finish the tool tomorrow—now it was time to eat fish!

Theirs was one of several hearths and lean-tos in camp. Each was individualized, but all were structured similarly. They were 10–20 long steps from each other, sometimes closer and sometimes farther. After the meals at each hut were finished, the camp slowly began to gather at Wakara and Saviot’s hearth to hear about his journey.

The moon was bright that evening, the stars subdued by its light. Getting back to their respective huts was easy in the moonlight. The children had already gone to their beds when Saviot covered up with her buffalo robe. Wa- kar was also already in bed, tired from his journey. Life in camp had been good this year. They talked a bit and considered their options for the coming months and next winter, and then dozed off.
Conclusion

Chances are great that the results presented in this book and their portrayal of Paleoindian prehistory will be short-lived. This is as it should be. The Paleoindian database in the Rocky Mountain high country is growing by leaps and bounds every year, and its future resynthesis will change the way we perceive the deepest American past. Chances are also good that the montane approach to the Rocky Mountain Paleoindians explored here will be elaborated further by future generations of prehistorians, as a means of elucidating not only Paleoindian prehistory but all the prehistory of this region. Prehistoric peoples, like modern Coloradans, had to contend with hypoxia and other effects of altitude, and they did so through biological and cultural strategies. The specific strategies they chose depended on several factors. If, as I and some others maintain, they were full-time residents of the true high country, strategies commensurate with high-altitude adaptations were critical. If the high country was only part of their annual round, hypoxia and high-altitude issues would be even more severe during their use of such places because they would not have had time to adapt during short use periods. Either way, I think that montane issues simply have to play a role if we are to adequately understand the Rocky Mountaineers of the past and present.

Nearly 13,000 years ago the first American saw Middle Park. Only 195 years ago James Crawford, the first Euroamerican there, drove cattle into Middle Park. Other than the significant paleoenvironmental changes that had occurred in the intervening 13,000 years, did they see the same thing? What might be the connection between Crawford, whose name we know, and that first American 13,000 years ago, whose name we do not know? It goes without saying that life was harsh for the first Americans with their limited shelter. But was this much different for Crawford? Both entered uncharted territory, and both had past experiences that prepared them (or not) for what to come. How did the first Americans fare that first winter in the Park? Or did they depart the park before the snow flew? In the bad winter of 1879, when millions of cattle died throughout the Rockies, James Crawford learned about the real conditions of Middle Park and tested his survival skills. Did the first Americans to enter the park undergo a similar epiphany?

We do not know and will never know the answer to this question. But we know that both were pioneers, and that both came to love and respect the land we now call Middle Park. The high mountain valley is surrounded on three sides by the Continental Divide, by some of the highest snowpacked peaks in North America, and was one of the most inaccessible places on the continent until quite recently. For Crawford, we know from the copious historical records and personal accounts how he and other early settlers came to feel about the land and understand it, and we know that today's ranchers still feel a strong bond with the land (e.g., Associated Press 2012). For the first Americans, the record isn't there. But we know the deep respect all hunter-gatherers have for the land and the resources it gives them and the rituals they practice to ensure a future for themselves. The people of the past left such records in rock images in caves and shelters in the Old World since before the end of the last ice age, and in the Americas over the past 12,000 years. Such images speak of close connections to the land, connections that link all hunter-gatherers, but that also link hunter-gatherers to others who depend on the land even today for livelihood.

Can we really ever understand either of these peoples? From our perspective it is not clear that we can understand Crawford any better than we can understand the first Americans who stood on top of Muddy Pass looking down the valley into the land of plenty—plenty of buffalo, deer, elk, yampa, serviceberries, and many other resources—but also the land of no cousins, no neighbors, no kin. No one to rely on in case of adversity. Both pioneers are so far removed from our comfortable existence, our material possessions, from everything of today's daily life, that no amount of survival training can ever bridge the gap.

And both were pioneers. Pioneers because they ventured into the unknown and were willing to face danger and uncertainty. The uncertainty of what the next season might bring was no less for the first Americans than it was 12,000 years later for Crawford. Our culture values such pioneering; witness our fascination with the space program, the still few unexplored area of the
earth—the poles, deep waters, or even atoms and DNA. How did the culture of the first Americans to see Middle Park value such pioneering? Perhaps the same way? Their discovery of the park may have been perceived by them as just beneficial; after all, they stayed. Whatever the answers to these questions, the first Americans in Middle Park are an integral part of the history of the high country. This book was about them, and we hope to learn much more from them in the future.
References

235
References

236
References

Behrensmeyer, A. K.

Behrensmeyer, A. K., K. D. Gordon, and G. T. Yanagi

Bement, L.

Bement, Leland C., and Brian J. Carter

Bender, Susan J., and Gary A. Wright

Benedict, James B.

Benedict, James B., and Byron L. Olson

Bennett, Kenneth A., Richard H. Osborne, and Robert J. Miller

Bettinger, Robert L.

Binford, Lewis R.

References

Binford, Lewis B., Sally R. Binford, Robert Whallon, and Margaret Ann Hardin

Black, Kevin D.

Black, Robert C., III

Blackmar, Jeannette M.

Bleed, Peter

Bliege Bird, Rebecca; Eric A. Smith, and Douglas Bird

Bordes, François

Borresen, Jennifer A.

Bradley, Bruce A.

Bradley, Bruce A., Michael B. Collins, Andrew Hemmings, Marilyn Sloberg, and Jon C. Lohse

Bradley, Bruce A., and George C. Frison

Breternitz, David A., Alan C. Swedlund, and Duane Anderson

Brink, Jack
2008
Imagining Head-Smashed-In: Aboriginal Buffalo Hunting on the Northern Plains. Athabasca University Press, Edmonton, Alberta.

Brooks, Marjorie R.
1995

Brunswig, Robert H., Jr.
2005

2007

Bryan, Alan L.
1980

1988

Buckles, William G.
1971

Burck, Ernst S., Jr.
1994

2006

Butler, B. Robert
1966
The Old Cordilleran Culture in the Pacific Northwest. Occasional Papers No. 5. Idaho State College Museum, Pocatello.

1996

1996
Cultural Relations between Two Plains. *Archaeology in Montana* 7(2):1–2.

Butterfield, G.
1990

Byers, David
2002

2009

Byers, David, Brenda Hill, Lindsey Kester, Brent Larsen, Cody Mittanck, and Craig Smith
2008
Surface Collection and Test Excavations at the Dawson Site (Site 42EM695). Emery County, Utah. Prepared by Entrix, Salt Lake City, for Utah Division of State History, Salt Lake City.

Byers, D. A., and A. Ugan
2009

Byrnes, Allison M.
2009

Caldwell, Joseph R.
1958

Caldwell, R. K.
1974

1999 Clovis Blade Technology: A Comparative Study of the Kevin Davis Cache, Texas, University of Texas Press, Austin.

Danielle, Joseph R. 2003 The Barger Gulch Locality B Formal Tool

dela Calancha, A. 1639 Crónica moralizadora de la Orden de San Agustín, Imprenta Pedro Lacaballería, Barcelona.

Ebert, James I., and Timothy Kohler 1988 The Theoretical Basis of Archaeological Predictive Modeling and a Consideration of Appropriate Data-Collection Methods. In Quantifying the Present and Predicting the
References

Elia, Scott A.

2002 Rocky Mountains: Smithsonian Institution Press, Washington, D.C.

Ellen, Roy

Emerson, Alice

Everitt, B.S.

Fall, P.L.

Fenneman, Nevin M.

Ferring, C. Reid (editor)
2001 The Archeology and Paleoecology of the Aubrey Clovis Site (41DN479), Denton County, Texas. Center for Environmental Archaeology, University of Texas, Denton.

Fiedel, Stuart L. and Joliet E. Morrow

Figns, Jesse D.

Finley, J.R., M. Kornfeld, G.C. Frison, C.C. Finley, and M.T. Bies

Fitzhugh, Ben, S. Colby Phillips, and Erik Gjesfjeld

Flannery, Kent V. (editor)

Flemmiken, J.J.

Flint, Patricia Robbins

Forbis, Richard G., and J.D. Sperry

Francis, Julie E.

Frison, A.R., Frison, George C.

Frison, George C.

1976b The Chronology of Paleo-Indian and Alt-
References

Frison, George C., and Bruce Bradley 1980 Folsom Tools and Technology: The Hanson Site. University of New Mexico Press, Albuquerque.

Frison, George C., and Danny N. Walker (editors) 2007 Medicine Lodge Creek Site, Clovis Press, Avondale, Colorado.

References

Haynes, C. Vance

Haynes, C. Vance, Jr., and Bruce B. Huckell (editors)

Haynes, C. V., Jr., M. McFaul, R. H. Brunswig, and K. D. Hopkins

Haynes, Gary

Hibben, Frank G.

Hill, Andrew

Hill, Matthew E., Jr.

Hill, Matthew G.

Hill, Matthew G., Edward J. Knell, and Andrés D. Iseta

Hill, Matthew G., and Marcel Kornfeld

Hitchcock, Robert, and James Ebert

Hoff, Charles L., and Andrew E. Abelson

Hofman, Jack L.

References

2008 La Sena, Nebraska and Loverswell, Kansas Sites, 18,000 C14 years BP. Paper presented at Paleoamerican Origins Workshop, Texas Archaeological Research Laboratory, Austin.
References

Ingbar, Eric E.

Ingbar, Eric E., and Jack L. Hofman

Irwin, Henry T.

Irwin-Williams, Cynthia, Henry T. Irwin, George Agogino, and C. Vance Haynes Jr.

Isaac, G.

Ives, R. L.

Izett, Glen A.

Izett, G. A., and C. S. V. Barclay

Jantz, Joel C.

Jochim, Michael A.

Jodry, Margaret A.

Jodry, Margaret A., and Dennis J. Stanford

Johnson, Ann, Brian O. K. Reeves, and Mack W. Shortt

Johnson, Dave, and Jana Pastor

Johnson, Eileen

2008 Hebier and Mud Lake Sites, Wisconsin, 12,500–13,500 Radiocarbon Years B.P. Paper presented at the Paleoamerican Origins
References

Workshop, Texas Archaeological Research Laboratory, Austin, February 14–16.
Jones, George T., and Charlotte Beck

Joyce, Dan

Judge, W. James

Junnila, Amy, Scott Hamilton, J. El Molto, and Ryan L. Parr

Kay, Marvin

Kay, Marvin, and Juliann VanNest

Kedley, L. H.

Kelly, Robert L., and Lawrence C. Todd

Kidder, Alfred V.

1924 An Introduction to the Study of Southwestern Archaeology with a Preliminary Account of the Excavations at Pecos. Yale University Press, New Haven; Phillips Academy, Andover, Massachusetts.

Kilby, David J.

Knudson, Ruthann

1983 Organizational Variability in Late Paleo-Indian Assemblages. Reports of Investigations No. 60. Laboratory of Anthropology, Washington State University, Pullman.

Knudson, Ruthann, and Marcel Kornfeld

Kornfeld, Marcel

References

Metcalf, Michael D., and Kevin D. Black 1991 Archaeological Excavations at the Yarnony Pit House Site: Cultural Resource Series
References

Nelson, Nels

Olson, Byron L.

Oto, Akira

Outram, Alan K.

Oviatt, C. G., D. B. Madsen, and D. N. Schmitt

Patten, Bob

Pawson, J. G., and C. Jesi

Peterson, Kurt L., and William D. Eckerle
1983 ETSI Pipeline Project Cultural Resources Reports Number 7: Prehistoric Inventory along the Coal Shale Line from Rawhide Basin to Van Tassell, Wyoming. Prepared for P. III Associates by the Office of the Wyoming State Archeologist, Department of Anthropology, University of Wyoming, Laramie.

Petersen, Michael R.

Picón-Reloj, E.

Pierce, Kenneth L.

Pinion, Ariane O.

Pitblado, Bonnie L.

2007 Angsturta, Jimmy Allen, Foothills-Mountain:
References

Politis, Gustavo G. 2007 Nakak: Etnoarchaeology of an Amazonian People. Left Coast Press, Walnut Creek, California.

1936 Additional Information on the Folsom Complex. Smithsonian Miscellaneous Collections 95:5–58.

1943 A New Site. American Antiquity 8:100.

Rood, Ronald J. 1993 Deception Creek Projectile Points: A Late Paleoindian Type for the Foothill-Mountain Regions, Southwestern Lonesome Chair.

Roper, Donna (editor) 2002 Medicine Creek: Seventy Years of Archaeological Investigations, University of Alabama Press, Tuscaloosa.

255
References

References

Straus, L. G., D. J. Melzter, and T. Goebel

Sundstrom, Linnéa

Surovell, Todd A.

Surovell, Todd A., and Nicole M. Waguespack

Surovell, T. A., N. M. Waguespack, M. Kornfeld, and G. C. Frison

Swanson, Earl H., Jr.
1972 Birch Creek: Human Ecology in the Cool Desert of the Northern Rocky Mountains. Idaho State University Press, Pocatello.

Tanaka, Jiro

Tankersley, Kenneth B.
2002 In Search of Ice Age Americans. Gibbs Smith, Salt Lake City.

Taylor, Walter W.

Thomas, David Hurst

Thomas, R. Brooke

Thomas, R. Brooke, and Bruce P. Winterhalder

Todd, Lawrence C.

Todd, Lawrence C., Matthew G. Hill, David J. Rapson, and George C. Frison

Todd, Lawrence C., and David J. Rapson

Todd, Lawrence C., David J. Rapson, and Jack L. Hofman

Toll, Oliver W.

258
References

Torrence, Robin

Torrence, Robin (editor)

Trigge, Bruce

Tringham, Ruth

Tringham, R., G. Cooper, G. Odell, B. Voytek, and A. Whitman

Tuohy, D. R., and A. J. Dansie

Turnbull, Collin

Veblen, T. T., and D. C. Lorenz

Verbicky-Todd, Eleanor

Veth, Peter, Nicola Stern, Jo McDonald, Jane Balmy, and Iain Davidson

Vierling, Lee A.

Vierra, Bradley J.

Wiwa, Bradley J., Margaret A. Jodry, M. Steven Shackleley, and Michael J. Dilley

Voorhies, Michael R.

Wiguespack, Nicole, and Todd Surovell

Walker, Danny N.

Walker, Renee B.

Walker, Renee B., and Boyce N. Driskell (editors)

Wedel, Waldo R.

1965 Central Plains Prehistory. University of Nebraska Press, Lincoln.

Wedel, Waldo R., Wilfred M. Husted, and John Moss
References

Weedman, Kathryn

Whallon, Robert, William A. Lovis, and Robert K. Hitchcock (editors)

Wheat, Joe Ben

Wheeler, Charles W., and Thomas J. Lennon

Wheeler, Charles W., and Gary Martin

Wheeler, S. M., and G. N. Wheeler

White, Leslie A.

White, Patrice

White, Patrice, Marcel Kornfeld, and George C. Frison

Wiesend, Christiana, and George C. Frison

Wiessner, Polly

Wiley, Andrea S.

Wilke, Phyllis, J. J. Flenkisen, and T. L. Orban

Wilmsen, E. N., and F. H. H. Roberts

Wilson, Michael C.

Winter, Alan E.

Winfrey, James

Winter, Joseph C.

Winter, Joseph C. (editor)

Wisler, Clark

Wobst, H. Martin

260
References

